Skip to main content
Log in

Genetic engineering of rice to resist rice tungro disease

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Rice tungro disease (RTD), caused by the co-infection of rice tungro bacilliform virus (RTBV) and rice tungro spherical virus, is one of the most important viral diseases of rice in South and Southeast Asia. The disease remains one of the major threats to sustainable rice production in many countries. The lack of resistance genes to RTBV—the causal agent of tungro disease—makes it even more difficult to manage RTD. In this review, we summarize previous and current research efforts to genetically engineer rice in order to increase the crop’s resistance to tungro disease, including the use of pathogen-derived resistance and of host genes that confer RTD resistance and/or that restrict feeding by the insect vector. The prospects of developing rice cultivars with durable resistance to RTD are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Anjaneyulu A.; Satapathy M. K.; Shukla V. D. Rice tungro. Science Publishers Inc, Lebanon, NH; 1995.

    Google Scholar 

  • Arboleda M.; Azzam O. Inter- and intra-site genetic diversity of natural field populations of rice tungro bacilliform virus in the Philippines. Arch. Virol. 145:275–289; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Azzam O.; Arboleda M.; Umadhay K. M; Delos Reyes J. B.; Cruz F. S.; Mackenzie A.; et al. Genetic composition and complexity of virus populations at tungro-endemic and outbreak rice sites. Arch. Virol. 145:2643–2657; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Azzam O.; Chancellor T. C. The biology, epidemiology, and management of rice tungro disease in Asia. Plant Dis. 86:88–100; 2002.

    Article  CAS  Google Scholar 

  • Azzam O.; Imbe T.; Ikeda R.; Nath N.; Coloquio E. Inheritance of resistance to rice tungro spherical virus in a near-isogenic line derived from Utri Merah and in rice cultivar TKM6. Euphytica 122: 91–97; 2001.

    Article  CAS  Google Scholar 

  • Azzam O.; Klöti A.; Sta Cruz F. C.; Fütterer J.; Coloquio E. L.; Potrykus I.; et al. Genetic engineering of rice for tungro resistance. In: Chancellor T. C.; Azzam O.; Heong K. L. (eds) Rice tungro disease management. International Rice Research Institute, IRRI, Los Banos, Laguna, Philippines; 1999.

  • Bhattacharyya-Pakrasi M.; Peng J.; Elmer J. S.; Laco G.; Shen P.; Kaniewska M. B.; et al. Specificity of a promoter from the rice tungro bacilliform virus for expression in phloem tissues. Plant J. 4:71–79; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Cabauatan P. Q.; Hibino H. Isolation, purification, and serology of rice tungro bacilliform and rice tungro spherical viruses. Plant Dis. 72:526–528; 1988.

    Article  Google Scholar 

  • Chancellor T. C.; Azzam O.; Heong, K. L. Rice tungro disease management. Proceedings of the International Workshop on Tungro Disease Management. International Rice Research Institute, Makati; 1999.

  • Chen G.; Muller M.; Potrykus I.; Hohn T.; Futterer J. Rice tungro bacilliform virus: transcription and translation in protoplasts. Virology 204:91–100; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Culver J. N.; Padmanabhan M. S. Virus-induced disease: altering host physiology one interaction at a time. Annu. Rev. Phytopathol. 45:221–243; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Dai S.; Petruccelli S.; Ordiz M. I.; Zhang Z.; Chen S.; Beachy R. N. Functional analysis of RF2a, a rice transcription factor. J. Biol. Chem. 278:36396–36402; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Dai S.; Wei X.; Alfonso A. A.; Pei L.; Duque U. G.; Zhang Z.; et al. Transgenic rice plants that overexpress transcription factors RF2a and RF2b are tolerant to rice tungro virus replication and disease. Proc. Natl. Acad. Sci. U. S. A. 105:21012–21016; 2008.

    Article  PubMed  Google Scholar 

  • Dai S.; Zhang Z.; Bick J.; Beachy R. N. Essential role of the Box II cis element and cognate host factors in regulating the promoter of Rice tungro bacilliform virus. J. Gen. Virol. 87:715–722; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Dai S.; Zhang Z.; Chen S.; Beachy R. N. RF2b, a rice bZIP transcription activator, interacts with RF2a and is involved in symptom development of rice tungro disease. Proc. Natl. Acad. Sci. U. S. A. 101:687–692; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta I.; Hull R.; Eastop S.; Poggi-Pollini C.; Blakebrough M.; Boulton M. I.; et al. Rice tungro bacilliform virus DNA independently infects rice after Agrobacterium-mediated transfer. J. Gen. Virol. 72( Pt 6):1215–1221; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Druka A.; Hull, R. Variation of rice tungro viruses: further evidence of two rice tungro bacilliform virus strains and possible several rice tungro spherical virus variants. J. Phytopathol. 146:175–178; 1998.

    Article  Google Scholar 

  • Fuchs M.; Gonsalves D. Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Annu. Rev. Phytopathol. 45:173–202; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Ganesan U.; Suri S. S.; Rajasubramaniam S.; Rajam M. V.’ Dasgupta I. Transgenic expression of coat protein gene of Rice tungro bacilliform virus in rice reduces the accumulation of viral DNA in inoculated plants. Virus Genes. 39:113–119; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Guerra-Peraza O.; Kirk D.; Seltzer V.; Veluthambi K.; Schmit A. C.; Hohn T.; et al. Coat proteins of rice tungro bacilliform virus and Mungbean yellow mosaic virus contain multiple nuclear-localization signals and interact with importin alpha. J. Gen. Virol. 86:1815–1826; 2005.

    Article  PubMed  CAS  Google Scholar 

  • He X.; Hohn T.; Futterer J. Transcriptional activation of the rice tungro bacilliform virus gene is critically dependent on an activator element located immediately upstream of the TATA box. J. Biol. Chem. 275:11799–11808; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Herdt R. W. Equity considerations in setting priorities for third world rice biotechnology research. Development: Seeds of Change. 4:19–24; 1988.

    Google Scholar 

  • Hibino H.; Cabauatan P. Q. Infectivity neutralization of rice tungro-associated viruses acquired by vector leafhoppers. Phytopathology. 77:473–476; 1987.

    Article  Google Scholar 

  • Hibino H.; Saleh N.; Roechan M. Transmission of two kinds of rive tungro-associated viruses by insect vectors. Phytopathology. 69:1266–1268; 1979.

    Article  Google Scholar 

  • Huet H.; Mahendra S.; Wang J.; Sivamani E.; Ong C. A.; Chen L.; et al. Near immunity to rice tungro spherical virus achieved in rice by a replicase-mediated resistance strategy. Phytopathology. 89:1022–1027; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Hull R. Molecular biology of rice tungro viruses. Annu. Rev. Phytopathol. 34:275–297; 1996.

    Article  PubMed  CAS  Google Scholar 

  • John V. T.; Ghosh A. Estimation of losses due to tungro virus. In: Govindu H. C; Veerash G. K.; Walker P. T.; Jenkin J. F. (eds) Assessment of crop losses due to pests and diseases. University of Agricultural Sciences, Bangalore; 1980.

    Google Scholar 

  • Jones M. C.; Gough K.; Dasgupta I.; Rao B. L.; Cliffe J.; Qu R.; et al. Rice tungro disease is caused by an RNA and a DNA virus. J. Gen. Virol. 72(Pt 4):757–761; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Kang B. -C.; Yeam I.; Jahn M. M. Genetics of plant virus resistance. Annu. Rev. Phytopathol. 43:581–621; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Khush G. S.; Angeles E.; Virk P. S.; Brar D. S. Breeding rice for resistanceto tungro virus at IRRI. SABRAO J. Breed. Genet. 36:101–106; 2004.

    Google Scholar 

  • Kloti A.; Henrich C.; Bieri S.; He X.; Chen G.; Burkhardt P. K.; et al. Upstream and downstream sequence elements determine the specificity of the rice tungro bacilliform virus promoter and influence RNA production after transcription initiation. Plant Mol. Biol. 40:249–266; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Laco G. S.; Beachy R. N. Rice tungro bacilliform virus encodes reverse transcriptase, DNA polymerase, and ribonuclease H activities. Proc. Natl. Acad. Sci. U. S. A. 91:2654–2658; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Laco G. S.; Kent S. B.; Beachy R. N. Analysis of the proteolytic processing and activation of the rice tungro bacilliform virus reverse transcriptase. Virology. 208:207–214; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Marmey P.; Bothner B.; Jacquot E.; de Kochko A.; Ong C. A.; Yot P.; et al. Rice tungro bacilliform virus open reading frame 3 encodes a single 37-kDa coat protein. Virology. 253:319–326; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Maule A. J.; Caranta C.; Boulton M. I. Sources of natural resistance to plant viruses: status and prospects. Mol. Plant Pathol. 8:223–231; 2007.

    Article  CAS  Google Scholar 

  • Mew T. W.; Leung H.; Savary S.; Cruz C. M. V.; Leach J. E. Looking ahead in rice disease research and management. Crit. Rev. Plant Sci. 23 103–127; 2004.

    Article  Google Scholar 

  • Muralidharan K.; Krishnaveni D.; Rajarajeswari N. V. L.; Prasad A. S. R. Tungro epidemics and yield losses in paddy fields in India. Curr. Sci. 85:1143–1147; 2003.

    Google Scholar 

  • Nagadhara D.; Ramesh S.; Pasalu I. C.; Rao Y. K.; Krishnaiah N. V.; Sarma N. P.; Bown D. P.; Gatehouse J. A.; Reddy V. D.; Rao, K. V. Transgenic indica rice resistant to sap-sucking insects. Plant Biotechnol. J. 1:231–240; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Nelson R. S.; McCormick S. M.; Delannay X.; Dube P.; Layton J.; Anderson E. J.; et al. Virus tolerance, plant growth, and field performance of transgenic tomato plants expressing coat protein from tobacco mosaic virus. Biotechnology. 6:403–409; 1988.

    Article  Google Scholar 

  • Padmanabhan M. S.; Goregaoker S. P.; Golem S.; Shiferaw H.; Culver J. N. Interaction of the tobacco mosaic virus replicase protein with the Aux/IAA protein PAP1/IAA26 is associated with disease development. J. Virol. 79:2549–2558; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Padmanabhan M. S.; Shiferaw H.; Culver J. N. The tobacco mosaic virus replicase protein disrupts the localization and function of interacting Aux/IAA proteins. Mol. Plant Microbe Interact. 19:864–873; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Padmavathi G.; Krishnaiah N. V.; Siddiq E. A.; Kole C. Identification of random amplified polymorphic DNA markers for resistance to green leafhopper (Nephotetlix virescens distant) in rice. SABRAO J. Breed. Genet. 39:127–141; 2007.

    Google Scholar 

  • Petruccelli S.; Dai S.; Carcamo R.; Yin Y.; Chen S.; Beachy R. N. Transcription factor RF2a alters expression of the rice tungro bacilliform virus promoter in transgenic tobacco plants. Proc. Natl. Acad. Sci. U. S. A. 98:7635–7640; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Powell-Abel P.; Nelson R. S.; De B.; Hoffmann N.; Rogers S. G.; Fraley R. T.; et al. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science. 232:738–743; 1986.

    Article  Google Scholar 

  • Prins M.; Laimer M.; Noris E.; Schubert J.; Wassenegger M.; Tepfer M. Strategies for antiviral resistance in transgenic plants. Mol. Plant Pathol. 9:73–83; 2008.

    PubMed  CAS  Google Scholar 

  • Qu R. D.; Bhattacharyya M.; Laco G. S.; De Kochko A.; Rao B. L.; Kaniewska M. B.; et al. Characterization of the genome of rice tungro bacilliform virus: comparison with commelina yellow mottle virus and caulimoviruses. Virology. 185:354–364; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Qu S. H. Rice diseases. C.A.B. International, Wallingford; 1985.

    Google Scholar 

  • Saha P.; Dasgupta I.; Das S. A novel approach for developing resistance in rice against phloem limited viruses by antagonizing the phloem feeding hemipteran vectors. Plant Mol. Biol. 62:735–752; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Sebastian L. S.; Ikeda R.; Huang N.; Imbe T.; Coffman W. R.; McCouch S. R. Molecular mapping of resistance to rice tungro spherical virus and green leafhopper. Phytopathology 86:25–30; 1996.

    Article  CAS  Google Scholar 

  • Shands H. L.; Stoner A. K. Introduction. In: Hadidi A.; Khetarpal R. K.; Koganezawa H. (eds). Plant virus disease control. The American Phytopathological Society, St Paul; 1998.

    Google Scholar 

  • Shen P.; Kaniewska M.; Smith C.; Beachy R. N. Nucleotide sequence and genomic organization of rice tungro spherical virus. Virology. 193:621–630; 1993

    Article  PubMed  CAS  Google Scholar 

  • Shibata Y.; Cabunagan R. C.; Cabauatan P. Q.; Choi I. -R. Characterization of Oryza rufipogon-derived resistance to tungro disease in rice. Plant Dis. 91:1386–1391; 2007.

    Article  Google Scholar 

  • Sivamani E.; Huet H.; Shen P.; Ong C. A.; de Kochko A.; Fauquet C.; et al. Rice plant (Oryza sativa L) containing Rice tungro spherical virus (RTSV) coat protein transgenes are resistant to virus infection. Mol. Breed. 5:177–185; 1999.

    Article  CAS  Google Scholar 

  • Song W. Y.; Wang G. L.; Chen L. L.; Kim H. S.; Pi L. Y.; Holsten T.; et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science. 270:1804–1806; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Sta Cruz F. C.; Boulton M.I.; Azzam O.. Agroinoculation allows the screening of rice for resistance to rice tungro bacilliform virus. J. Phytopathol. 147:653–659; 1999.

    Article  Google Scholar 

  • Tepfer M. Risk assessment of virus-resistant transgenic plants. Annu. Rev. Phytopathol. 40:467–491; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Tyagi H.; Rajasubramaniam S.; Rajam M. V.; Dasgupta I. RNA-interference in rice against Rice tungro bacilliform virus results in its decreased accumulation in inoculated rice plants. Transgenic Res. 17:897–904; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Vanderschuren H.; Stupak M.; Fütterer J.; Gruissem W.; Zhang P. Engineering resistance to geminiviruses—review and perspectives. Plant Biotechnol. J. 5:207–220; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Wang C. M.; Yasui H.; Yoshimura A.; Zhai H. Q.; Wan J. M. Inheritance and QTL mapping of antibiosis to green leafhopper in rice. Crop Sci. 44:389–393; 2004.

    CAS  Google Scholar 

  • Yin Y.; Beachy R. N. The regulatory regions of the rice tungro bacilliform virus promoter and interacting nuclear factors in rice (Oryza sativa L). Plant J. 7:969–980; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Yin Y.; Chen L.; Beachy R. Promoter elements required for phloem-specific gene expression from the RTBV promoter in rice. Plant J. 12:1179–1188; 1997a.

    Article  PubMed  CAS  Google Scholar 

  • Yin Y.; Zhu Q.; Dai S.; Lamb C.; Beachy R. N. RF2a, a bZIP transcriptional activator of the phloem-specific rice tungro bacilliform virus promoter, functions in vascular development. EMBO J. 16:5247–5259; 1997b.

    Article  PubMed  CAS  Google Scholar 

  • Zenna N. S.; Cabauatan P. Q.; Baraoidan M.; Leung H.; Choi I. -R. Characterization of a putative rice mutant for reation to rice tungro disease. Crop Sci. 48:480–486; 2008.

    Article  Google Scholar 

  • Zenna N. S.; Sta Cruz, F. C.; Javier E. L.; Duka I. A.; Barrion A. A.; Azzam O. Genetic analysis of tolerance to rice tungro bacilliform virus in rice (Oryza sativa L.) through agroinoculation. J. Phytopathol. 154:197–203; 2006.

    Article  CAS  Google Scholar 

  • Zhang Q. Strategies for developing green super rice. Proc. Natl. Acad. Sci. U. S. A. 104:16402–16409; 2007.

    Article  PubMed  Google Scholar 

  • Zhu S.; Gao F.; Cao X.; Chen M.; Ye G.; Wei C.; et al. The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant Physiol. 139:1935–1945; 2005.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The work described and conducted by SD and RNB is supported, in part, by Department of Energy Grant DE-FG02-99ER20355.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunhong Dai.

Additional information

Editor: N. J. Taylor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, S., Beachy, R.N. Genetic engineering of rice to resist rice tungro disease. In Vitro Cell.Dev.Biol.-Plant 45, 517–524 (2009). https://doi.org/10.1007/s11627-009-9241-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-009-9241-7

Keywords

Navigation