
PostgreSQL/Print version

PostgreSQL

The current, editable version of this book is available in Wikibooks, the open-content textbooks collection, at
https://en.wikibooks.org/wiki/PostgreSQL

Permission is granted to copy, distribute, and/or modify this document under the terms of
the Creative Commons Attribution-ShareAlike 3.0 License.

https://en.wikibooks.org/wiki/PostgreSQL
https://en.wikibooks.org/wiki/Wikibooks:Creative_Commons_Attribution-ShareAlike_3.0_Unported_License

Features

The very first concept paper (https://dsf.berkeley.edu/papers/ERL-M85-95.pdf) - published in 1986 - defines a goal that distinguishes
PostgreSQL from many other systems until today: "provide user extendibility for data types, operators, and access methods". This goal is
reached. And it is not only available for users, even the internal implementation utilizes those interfaces to create system components.

PostgreSQL implements a client/server model. Each client process connects to one backend process at the server site. Such backend
processes are part of the instance, a group of many processes which act closely together and handle the data access. PostgreSQL does not use
threading in the backend processes or elsewhere.

Authentication methods: SCRAM-SHA-256, GSSAPI, SSPI, LDAP, RADIUS, Certificate, PAM
Roles (users and groups) authorize access to data and execution of functions

Transactions with full ACID support and diverse isolation levels
Savepoints (Sub-transactions)
Multi-Version Concurrency Control (MVCC)
Point-in-Time Recovery
Partitioning of tables and indexes
Synchronous, asynchronous, and logical replication
Bi-Directional replication
Publish/subscribe mechanism
Parallel execution of single queries at multiple CPUs

Rich set of predefined data-types, i.a. JSON
Support for arrays
Composite type (similar to a record in some programming languages), constructor for rows via row keyword
Check constraints
Referential integrity with foreign keys
Table inheritance
Views, materialized views, updateable views

User defined data-types, operators, and index access methods
User-defined functions, procedures, triggers, and procedural languages
Create extension interface to create user-defined packages. Some publicly available examples:

Foreign data wrappers to other - PostgreSQL or non-PostgreSQL - databases or to the file-system
PostGIS: an extention for Spatial and Geographic Objects
hstore: a key/value storage

High degree of conformance to the SQL standard: 170 out of 177 features
Outer join, union, intersect, except

An outstanding Goal

Architecture

Features

Security

Reliability

Application Aspects

Extendability

SQL Support

https://dsf.berkeley.edu/papers/ERL-M85-95.pdf

Group by, grouping set, cube, rollup
Common table expressions (CTE)
Recursive queries, graph queries
Window functions, analytic functions

Featured Platforms

PostgreSQL is available at diverse CPU architectures: x86, x86_64, IA64, PowerPC, PowerPC 64, S/390, S/390x, Sparc, Sparc 64, ARM,
MIPS, MIPSEL, PA-RISC and runs on all major operating systems. [1]

Linux

Red Hat family Linux (including CentOS/Fedora/Scientific/Oracle variants)
Debian GNU/Linux and derivatives
Ubuntu Linux and derivatives
SuSE and OpenSuSE

macOS
Windows (XP+)
Solaris
BSD

FreeBSD
OpenBSD
NetBSD

AIX
HP/UX

1. Operating Systems [1] (https://www.postgresql.org/docs/current/static/supported-platforms.html)

References

https://www.postgresql.org/docs/current/static/supported-platforms.html

Download and Installation

Before you download PostgreSQL you must make two crucial decisions. First, decide whether to compile and install PostgreSQL from
source code or to install from prebuilt binaries. Second (if you want to use any binary), you must know for which operating system you need
the software. PostgreSQL supports most UNIX-based systems (including macOS) as well as Windows.

After you have made those decisions you can download and use the complete source code, an installer, a Bitnami Infrastructure Stack, or the
pure binaries.

The source code is available as a single packed file [1] or in a git repository [2]. To install from source you must download it to your local
computer and compile it with a C compiler (at least C99-compliant, in most cases people use GCC (https://gcc.gnu.org/)) to the binary format
of your computer. Details of the requirements [3], the download process, and the compilation steps [4] are available in the PostgreSQL
documentation.

The advantages of working with the source code are that you can read and study it, modify it, or compile it on an exotic platform. But you
must have some pre-knowledge and experience in handling specific tasks of your operating system, e.g.: working in a shell, installing
additional programs,

The PostgreSQL documentation describes all details of the installation from source in the chapters:

Installation from Source Code on Unix (https://www.postgresql.org/docs/current/installation.html)
Installation from Source Code on Windows (https://www.postgresql.org/docs/current/install-windows.html)

In opposite to start at the source code level, it is relatively easy to use one of the pre-build programs or scripts. This is the preferred way for
beginners. You can choose from several options:

Installer [5]: This is the most comfortable way to download and install PostgreSQL on your local computer. The installer
guides you not only through the installation steps, but also offers the option to install helpful additional tools and drivers.
Installers are not available for all versions of all operating systems.

Bitnami infrastructure stack [6]: Such stacks (WAPP, MAPP, LAPP, and others) offer the complete infrastructure
(PostgreSQL, Apache Web Server, PHP) to run Web applications on Windows, macOS, or Linux.

Pure binaries [7]: This is a listing of operating-specific commands which leads you thru the download and installation
process of binaries.

Install binaries for Linux (Ubuntu) "PostgreSQL Apt Repository". https://www.postgresql.org/download/linux/ubuntu/.

Starting and stopping

Windows

By default, PostgreSQL launches at each reboot so it may consume many resources. To avoid that, just execute services.msc and change the
PostgreSQL service to start manually. Then, create a file postgresql.cmd containing:

Start at the Source Code Level

Start with the Help of a Prebuild Program

Examples

Create the file repository configuration:
sudo sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt $(lsb_release -cs)-pgdg main" >
/etc/apt/sources.list.d/pgdg.list'

Import the repository signing key:
wget --quiet -O - https://www.postgresql.org/media/keys/ACCC4CF8.asc | sudo apt-key add -

Update the package lists:
sudo apt-get update

Install the latest version of PostgreSQL.
If you want a specific version, use 'postgresql-12' or similar instead of 'postgresql':
sudo apt-get -y install PostgreSQL

sudo /etc/init.d/postgresql start
sudo /etc/init.d/postgresql stop

https://gcc.gnu.org/
https://www.postgresql.org/docs/current/installation.html
https://www.postgresql.org/docs/current/install-windows.html
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/

As long as this script is launched as an administrator, the cluster with all its databases is available. Just press a key to shutdown the service.

The PostgreSQL wiki (https://wiki.postgresql.org/wiki/Detailed_installation_guides) offers a lot more information and hints about the
installation steps.

After a successful installation, you will have

The PostgreSQL binaries on your disc.
A first cluster called data on your disc. The cluster consists of an empty database called postgres (plus two template
databases) and a user resp. role called postgres as well.
A set of Unix programs or a Windows service running on your computer. These programs/services handle the cluster
with all its databases.

By default, PostgreSQL listens to port 5432. Possibly you must configure your firewall to reflect this situation.

After a successful installation, you have a cluster data, a database postgres, the database superuser postgres, and a new operating system user
postgres. Login at the operating system level with the new operating system user. In a shell you can connect to the new database via the often
used program psql. psql is a line-mode program similar to a shell and allows you to send SQL commands to the database.

The default prompt (prefix of every new line) of psql is 'postgres=#'. After you have successfully started it, you can use SQL commands to
communicate with the database. Here is an example that creates a new database user with the name 'nancy' - and deletes it afterward.

The database responds to every SQL command indicating its successful execution or an error. In the previous example CREATE ROLE
means that the user is created.

Please recap what you have so far: a cluster data, a database postgres, a user postgres. Furthermore, PostgreSQL divides every
database into logical units which are called schema. Most objects reside in such a schema. The default schema is named public and exists in
every database. The same applies to some special schemas where system information is stored. As far as you don't explicitly use schema-
names, the schema public is utilized by default. This means that a CREATE TABLE t (column_1 INTEGER); command will create
the table t in schema public.

net start postgresql-x64-9.5
pause
net stop postgresql-x64-9.5

More Information

Connect to the Database

$ # Example in Unix syntax
$ su - postgres
Password:
$
$ # psql --help to see a detailed explanation of psql's options
$ # psql [OPTION]... [DBNAME [USERNAME]]
$ psql postgres postgres
psql (11.9 (Ubuntu 11.9-1.pgdg18.04+1))
Type "help" for help.

postgres=#
postgres=# \q -- terminate psql with backslash q or ctrl-d
$

postgres=# CREATE USER nancy WITH ENCRYPTED PASSWORD 'ab8sxx5F4';
CREATE ROLE
postgres=#
postgres=# DROP USER nancy; -- delete the user
DROP ROLE
postgres=#

Separation of Concerns

https://wiki.postgresql.org/wiki/Detailed_installation_guides

We recommend avoiding the schema public for your data. Because public exists in every database, some tools use it to
store their data there. Create and work in your own schema to have a clear distinction between system-, tools-, and user-
data.

Second, avoid working with user postgres. This user account has very strong privileges and you should rarely use it.
Create a user who acts as the stakeholder for your data, views, functions, trigger, etc. .

The following script creates a new user and its schema.

Start psql with the new user finance_master. We want him to work in schema finance, but every connection between psql and PostgreSQL
acts at the database-level. It's not possible to specify an individual schema for a connection. Therefore PostgreSQL has implemented a
mechanism called search_path. It simplifies the switching between schemas. search_path contains a list of schema names.
Whenever you omit a schema name, this list is consulted to decide which schema to use. For our user finance_manager we have defined in
the above ALTER ROLE command that he shall work in schema finance and - if there is no hit for his SQL command e.g. for a SELECT -
the schema public is consulted next.

1. Source code in a single packed file (via FTP) [2] (https://www.postgresql.org/ftp/source/)
2. Source code in a git repository [3] (https://www.postgresql.org/docs/current/git.html)
3. Requirements for compilation (Unix)[4] (https://www.postgresql.org/docs/current/static/install-requirements.html)
4. Installing from Source [5] (https://www.postgresql.org/docs/current/installation.html)
5. Installer [6] (https://www.enterprisedb.com/downloads/postgres-postgresql-downloads)
6. Bitnami stacks [7] (https://bitnami.com/tag/postgresql)
7. Download binaries [8] (https://www.postgresql.org/download/)

$ # start 'psql' as the original 'postgres' user with its strong priviledges
$ psql postgres postgres
postgres=# -- the owner of the new schema shall be 'finance_master'
postgres=# CREATE USER finance_master WITH CREATEROLE LOGIN ENCRYPTED PASSWORD 'xxx';
CREATE ROLE
postgres=# -- the new schema 'finance' for your data
postgres=# CREATE SCHEMA finance AUTHORIZATION finance_master;
CREATE SCHEMA
postgres=# -- change 'search_path' (description of search_path: see below)
postgres=# ALTER ROLE finance_master SET search_path = finance, public;
ALTER ROLE
postgres=# \q

$ # -- first parameter of psql: database second parameter: user nothing for schema
$ psql postgres finance_master
postgres=# -- create a table
postgres=# CREATE TABLE t1 (column_1 INTEGER); -- table will be in schema 'finance' because of the 'search_path'
definition
CREATE TABLE
postgres=# -- you can use the schema name explicitly
postgres=# CREATE TABLE finance.t2 (column_1 INTEGER); -- table will be in schema 'finance' as well
CREATE TABLE
postgres=# -- it's possible to overwrite 'search_path' by using the schema name explicitly
postgres=# CREATE TABLE public.t3 (column_1 INTEGER); -- table will be in schema 'public'
CREATE TABLE
postgres=#
postgres=# \d -- this command lists schema, table, and owner names
 List of relations
 Schema | Name | Type | Owner
---------+---------+-------+----------------
 finance | t1 | table | finance_master
 finance | t2 | table | finance_master
 public | t3 | table | finance_master
postgres=#

References

https://www.postgresql.org/ftp/source/
https://www.postgresql.org/docs/current/git.html
https://www.postgresql.org/docs/current/static/install-requirements.html
https://www.postgresql.org/docs/current/installation.html
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://bitnami.com/tag/postgresql
https://www.postgresql.org/download/

Managing the Instance

The PostgreSQL instance consists of several processes running on a server platform. They work together in a coordinated manner using
common configuration files and a common start/stop procedure. Thus all are running or none of them.

The program pg_ctl controls and observes them as a whole. When you are logged in as user postgres you can start it from a shell. The
simplified syntax is:

pg_ctl [status | start | stop | restart | reload | init] [-U username] [-P password] [--help]

When pg_ctl runs in the status mode, it lists the actual status of the instance.

$ pg_ctl status
pg_ctl: server is running (PID: 864)
/usr/lib/postgresql/9.4/bin/postgres "-D" "/var/lib/postgresql/9.4/main" "-c"
"config_file=/etc/postgresql/9.4/main/postgresql.conf"
$

You can observe, whether the instance is running or not, the process id (PID) of the postmaster, the directory of the cluster and the name of
the configuration file.

When pg_ctl runs in the start mode, it tries to start the instance.

$ pg_ctl start
...
database system is ready to accept connections
$

When you see the above message everythink works fine.

When pg_ctl runs in the stop mode, it tries to stop the instance.

$ pg_ctl stop
...
database system is shut down
$

When you see the above message the instance is shut down, all connections to client applications are closed and no new applications can
reach the database. The stop mode knows three different modes for shutting down the instance:

Smart mode waits for all active clients to disconnect.
Fast mode (the default) does not wait for clients to disconnect. All active transactions are rolled back and clients are
forcibly disconnected.
Immediate mode aborts all server processes immediately, without a clean shutdown.

Syntax: pg_ctl stop [-m s[mart] | f[ast] | i[mmediate]]

When pg_ctl runs in the restart mode, it performs the same actions as in a sequence of stop and start.

In the reload mode the instance reads and reloads its configuration file.

status

start

stop

restart

reload

In the init mode the instance creates a complete new cluster with the 3 databases template0, template1, and postgres. This command needs
the additional parameter -D datadir to know at which place in the file system it shall create the new cluster.

In most cases it is necessary that PostgreSQL starts immediately after the server boots. Whether this happens - or not - may be configured in
the file start.conf, which is located in the special directory $PGDATA (Debian/Ubuntu) or in the main directory of the cluster
(RedHat). There is only one entry and its allowed values are:

auto: automatically start/stop
manual: do not start/stop automatically, but allow manually managing as described above
disabled: do not allow manual startup with pg_ctlcluster (this can be easily circumvented and is only meant to be a small
protection for accidents)

init

Automated start at boot time

Tools

Tools for database administration (DBA) tasks such as backups, restores, and cleanups are mostly not part of the SQL standard. Vendor
specific database products usually include a combination of database specific tools and SQL extensions for administration purposes.
PostgreSQL provides a set of both PostgreSQL specific tools and SQL extensions. The main ones are described here as well as some reliable
external tools.

psql is a client program which is delivered as an integral part of the PostgreSQL downloads. Similar to a bash shell it is a line-mode program
and may run on the server hardware or a client. psql knows two kinds of commands:

Commands starting with a backslash, eg: \dt to list tables. Those commands are interpreted by psql itself.
All other commands are sent to the instance and interpreted there, e.g.: SELECT * FROM mytable;.

Thus it is an ideal tool for interactive and batch SQL processing. The whole range of PostgreSQL SQL syntax can be used to perform
everything that can be expressed in SQL.

$ # start psql from a bash shell for database 'postgres' and user 'postgres'
$ psql postgres postgres
postgres=#
postgres=# -- a standard SQL command
postgres=# CREATE TABLE t1 (id integer, col_1 text);
CREATE TABLE
postgres=# -- display information about the new table
postgres=# \dt t1
 List of relations
 Schema | Name | Type | Owner
--------+------+-------+---------
 public | t1 | table | postgres
(1 row)
postgres=#
postgres=# -- perform a PostgreSQL specific task - as an example of a typically DBA action
postgres=# SELECT pg_start_backup('pitr');
 pg_start_backup

 0/2000028
(1 row)
postgres=#
postgres=# -- terminate psql
postgres=#\q
$

Here are some more examples of psql 'backslash'-commands

\h lists syntax of SQL commands
\h SQL-command lists syntax of the named SQL-command
\? help to all 'backslash' commands
\l lists all databases in the current cluster
\echo :DBNAME lists the current database (consider upper case letters). In most cases the name is part of the psql
prompt.
\dn lists all schemas in the current database
\d lists all tables, views, sequences, materialized views, and foreign tables in the current schema
\dt lists all tables in the current schema
\d+ TABLENAME lists all columns and indexes in table TABLENAME
\du lists all users in the current cluster
\dp lists access rights (privileges) to tables, ...
\dx lists installed extensions
\o FILENAME redirects following output to FILENAME
\t changes output to 'pure' data (no header, ...)
\! COMMAND executes COMMAND in a shell (outside psql)
\q terminates psql

psql

pgAdmin

pgAdmin

PhpPgAdmin

pgAdmin is a tool with a graphical user interface for Unix, Mac OSX and Windows operating
systems. In most cases it runs on a different hardware than the instance. For the major operating
systems it is an integral part of the download, but it is possible to download the tool separately (http://
www.pgadmin.org/download/).

pgAdmin significantly extends the functionalities of psql with intuitive, graphical representations of
database objects, eg. schemas, tables, columns, users, result lists, query execution plans,
dependencies between database objects, and much more. To give you a first impression of the
surface, some screenshots (http://www.pgadmin.org/screenshots/) are online.

Since 2016 pgAdmin 3 is superseded by pgAdmin 4. pgAdmin 4 is a complete re-implementation - written as a web application in Python.
You can run it either on a web server using a browser, or standalone on a workstation.

phpPgAdmin is a graphical tool which offers features that are similar to those of pgAdmin. It is
written in PHP, therefore you additionally need Apache and PHP packages.

phpPgAdmin is not part of the standard PostgreSQL downloads. It is distributed via Sourceforge (htt
p://sourceforge.net/projects/phppgadmin/). The project was largely dormant over the past few years,
but as of 2019 has been updated with support for PHP7 and PostgreSQL 12[1].

There are a lot of other general tools (https://wiki.postgresql.org/wiki/Community_Guide_to_Postgre
SQL_GUI_Tools) and monitoring tools (https://wiki.postgresql.org/wiki/Monitoring#Postgres-centric_monitoring_solutions) with a GUI
interface. Their functionality varies greatly from pure SQL support up to entity-relationship and UML support. Some of the tools are
open/free source, others proprietary.

1. https://github.com/phppgadmin/phppgadmin/releases/tag/REL_7-12-0

phpPgAdmin

Other Tools

References

https://en.wikibooks.org/wiki/File:PgAdmin-fr.png
https://en.wikibooks.org/wiki/File:Phppgadmin.png
http://www.pgadmin.org/download/
http://www.pgadmin.org/screenshots/
http://sourceforge.net/projects/phppgadmin/
https://wiki.postgresql.org/wiki/Community_Guide_to_PostgreSQL_GUI_Tools
https://wiki.postgresql.org/wiki/Monitoring#Postgres-centric_monitoring_solutions
https://github.com/phppgadmin/phppgadmin/releases/tag/REL_7-12-0

Configuration

The main configuration file is postgresql.conf. It is divided into several sections according to different tasks. The second important
configuration file is pg_hba.conf, where authentication definitions are stored.

Both files reside in the special directory $PGDATA (Debian/Ubuntu) or in the main directory of the cluster (RedHat).

Some configuration items have a dynamic nature, and will take effect with a simple pg_ctl reload. Others require a restart of the
instance pg_ctl restart. The comments in the default configuration files state which of the two actions has to be taken.

The value of data_directory defines the location of the cluster's main directory. In the same way the value of hba_file defines the location and
the name of the above mentioned pg_hba.conf file (host based authentication file), where rules for authentication are stored - some more
details are shown below.

In the connections section you define the port number (default: 5432), with which client applications can reach the instance. In addition the
maximum number of connections is defined as well as SSL, IP and TCP settings.

The main definition in the resources section is the size of shared buffers. It determines, how much space is reserved to "mirror" the content of
data files within PostgeSQL's buffers in RAM. The predefined default value of 128 MB is relatively low.

Secondly, there are definitions for the work and the maintenance memory. They determine the RAM sizes for sorts, create index commands,
... . These two RAM areas exist per connection and are used individually by them whereas the shared buffers exist only once for the whole
instance and are used concurrently by multiple processes.

Additionally there are some definitions concerning vacuum and background writer processes.

In the WAL section there are definitions for the behaviour of the WAL mechanism.

First, you define a WAL level out of the four possibilities minimal, archive, hot_standby, and logical. Depending on the decision, which kind
of archiving or replication you want to use, the WAL mechanism will either write only basic information to the WAL files or include
additional information. minimal is the basic method which is always required for every crash recovery. archive is necessary for any archiving
action, which includes the point-in-time-recovery (PITR) mechanism. hot_standby adds information required to run read-only queries on a
standby server. logical adds information necessary to support logical decoding.

Additionally and in correlation to the WAL level archive there are definitions which describe the archive behaviour. Especially the
'archive_command' is essential. It contains a command which copies WAL files to an archive location.

If you use replication to a different server, you can define the necessary values for master and standby server in this section. The master reads
and pays attention only on the master-definitions and the standby only to the standby-definitions (you can copy this section of 'postgres.conv'
directly from master to standby). You must define the WAL level to an appropriate value.

The tuning section defines the relative costs of different operations: sequential disc I/O, random disc I/O, process one row, process one index
entry, process one function-call or arithmetic operation, size of effective RAM pages (PostgreSQL + OS) per process which will be available
at runtime. These values are used by the query planner during its search for an optimal query execution plan. The values are not real values in
sense of milliseconds or number of CPU cycles. They are only a rough guideline for the query planer and relative to each other. The real
values are calculated during the query execution may differ significantly.

postgresql.conf

File Locations

Connections

Resources

WAL

Replication

Tuning

There is also a subsection concerning costs for the genetic query optimizer, which - in opposite to the standard query optimizer - implements a
heuristic searching for optimal plans.

The error logging section defines the amount, location and format of log messages which are reported in error situations or for debugging
purposes.

In the statistics section you can define - among other things - the amount of statistic collection for parsing, planing and execution of queries.

The pg_hba.conf file (host-based authentication) contains rules for client access to the instance. All connection attempts of clients which do
not satisfy these rules are rejected. The rules restrict the connection type, client IP address, database within the cluster, user-name, and
authentication method.

There are two main connection types: local connections (local) via sockets and connections via TCP/IP (host). The term local refers to the
situation, where a client program resides on the same machine as the instance. The client may override the local connection and use the host
connection type by using the TCP/IP address syntax (e.g.: 'localhost:5432') of the cluster.

The client IP address is a single IPv4 or IPv6 address or a masking of a net-segment via a CIDR mask.

The database and the client user name must be given explicitly or may be abbreviated by the key word "ALL".

There are different authentication methods

trust: don't ask for any password
reject: don't allow any access
password: ask for a password
md5: same as 'password', but the transfer of the password occurs MD5-encrypted
peer: trust the client, if he uses the same database username as his operation system username (only applicable for local
connections)

Since the pg_hba.conf records are examined sequentially for each connection attempt, the order of the records is significant. The first match
between defined criteria and properties of incoming connection requests hits.

Error Logging

Statistics

pg_hba.conf

BackupAndRecovery

Creating backups is an essential task for every database administrator. If the hardware crashes or there is software corruption, the DBA must
ensure that a database can be restored with minimal data loss. PostgreSQL offers multiple strategies to support the DBA in achieving this
goal.

Backup technology can be divided into two classes: cold backups and hot backups. A cold backup is a backup taken when no database file is
open. In the case of PostgreSQL this means that the instance is stopped, the backup is taken and the instance is restarted. A hot backup is a
backup taken during normal working operations. Applications can perform read and write actions in parallel with the backup creation. There
are different types of hot backups. The main types are: logical, physical, and physical with PITR. These will be described in more detail in
the section on hot backups.

Backup
 |
 +—— Cold Backup
 |
 +—— Hot Backup
 |
 +—— Logical Backup
 |
 +—— Physical Backup
 |
 +—— Physical Backup plus PITR

A cold backup is a backup taken when the PostgreSQL instance is not running and includes a consistent copy of all files which constitute
the cluster with all of its databases. Cold backups are also called offline backups.

There is only one way to create a consistent useful cold backup: the PostgreSQL instance should be stopped by issuing the pg_ctl stop
command. This will disconnect all applications from all the cluster's databases. After the instance is shut down, make a backup using one of
the standard operating system utilities (cp, tar, dd, rsync, etc.) to create a copy of all cluster files to a secure location, such as: on the disk of a
different server, on a backup system at a SAN or intranet, a tape system or other reliable location.

To be a successful backup, the backup must include the following cluster files:

Include all files under the directory node where the cluster is installed. The environment variable $PGDATA points to this
directory and usually resolves to something like, .../postgresql/9.4/main. Use echo $PGDATA on the command-
line or in psql, show data_directory; to retrieve the directory node path.
Include configuration files, which may be in $PGDATA, but can also be located elsewhere, for example, as they are on the
default Ubuntu install. These are the main configuration files: postgresql.conf, pg_hba.conf, and pg_ident.conf. Their
locations can be found by running the following commands from the psql utility:

Include all tablespace files. These files are located elsewhere on the file-system. Their locations can be found by looking
at the symlinks in the $PGDATA/pg_tblspc directory:

Caution! One may try to backup only special parts of a cluster, eg. a huge file which represents a table on a separate partition or tablespace -
or the opposite: everything except the huge file. Even if the instance is shut down during the generation of such a partial copy, copies of this
kind are useless. The restore of a cold backup needs all data files and meta-information files of the cluster to re-create the cluster.

A cold backup is easy to do and to restore.

A continuous 7x24 operation mode of any of the databases in the cluster is not possible.

Overview

Cold Backup (Offline Backup)

 show config_file;
 show hba_file;
 show ident_file;

 cd $PGDATA/pg_tblspc
 ls -lt

Advantages

Disadvantages

It is not possible to backup smaller parts of a cluster like a single database or table.
Partial restores are not possible. Restores must include all the cluster files.
After a crash, any data changes that occur after the most recent cold backup are lost. Only the data in the backup will be
restored.

It is strongly recommended to do the following steps on a test host to verify the restore before doing them on the production server.

In the case of a crash, restore the data from a cold backup by performing the following steps:

Stop the instance.
Backup the original files of the crashed cluster: the files in the $PGDATA path and the configuration files.
Delete all original files of the crashed cluster: the files in the $PGDATA path and the configuration files.
Copy the files of the backup to their original places.
Start the instance. It should start in the normal way, without any special message.

In contrast to cold backups, hot backups are taken while the instance is running and applications may change data as the backup is taken.

Hot backups are also known as online backups.

A logical backup is a consistent copy of the data within a database or some of its parts. These backups are created with the utilities
pg_dump and pg_dumpall. The instance must be running for these tools to operate. While they may be run in parallel to applications,
they create consistent snapshots as of the time they are called. For example, if an application changes some data values during the creation of
a backup, the backup takes the old values whereas the application sees the new values.

Logical backups run in serializable transactions. This is possible because of PostgreSQL's MVCC (Multi-version concurrency control)
implementation.

pg_dump works at the database level and can backup specific subsets of a database such as individual tables. It is able to dump data,
schema definitions or both. The parameters --data-only and --schema-only restrict the output to information respective to the
given flag.

pg_dump supports two output formats; text format and binary format. The format type is chosen by pg_dumps parameter --format.
The text format contains SQL commands like CREATE and INSERT. Files created in this format may be used by psql to restore the
backed-up data. The binary format is also called the archive format. To restore files with this format you must use the pg_restore tool.

The following diagram visualizes the cooperation of pg_dump, psql and pg_restore.

 +<——— pg_dump text format <——— original database ———> pg_dump binary format ———>+
 | |
script in SQL syntax binary file
 | |
 +——————————> psql ——————————> restored database <———————— pg_restore <—————————+

Some Examples:

$ # dump complete database 'finance' in text format to a file
$ pg_dump --dbname=finance --username=boss --file=finance.sql
$
$ # restore database content (to a different or an empty database)
$ psql --dbname=finance_x --username=boss <finance.sql
$
$
$
$ # dump table 'person' of database 'finance' in binary format to a file
$ pg_dump --dbname=finance --username=boss --table=person --format=c --file=finance_person.archive
$
$ restore table 'person' from binary archive
$ pg_restore --dbname=finance_x --username=boss --format=c <finance_person.archive
$

How to Recover

Hot Backup (Online Backup)

Logical Backup

pg_dump

The pg_dumpall command works at the cluster level and can backup up important cluster level objects like user/roles and their rights.
pg_dumpall without detailed parameters will dump the complete contents of the cluster: all data, and structures of all databases plus all
user definitions and definitions of their rights. The parameter --globals-only can be used to restrict its behavior to dump global objects
only. pg_dumpall outputs in the text format.

Continuous 7x24 operation mode is possible.
Small parts of cluster or database may be backup-ed or restored.
When you use the text format you can switch from one PostgreSQL version to another or from one hardware platform to
another.

The text format uses much space, but it compresses well.

As mentioned in the above diagram the recovery process depends on the format of the dump. Text files are in standard SQL syntax. To
recreate objects from this format you can use SQL utilities like psql. Binary files are in the archive format. They can only be used by the
utility pg_restore.

A physical backup is an inconsistent copy of the files of a cluster, created with operating system utilities like cp or tar taken at a time
whereas applications modify data. At first glance such a backup seems to be useless. To understand its purpose, you must know
PostgreSQL's recover-from-crash strategy.

At all times and independent from any backup/recovery action, PostgreSQL maintains Write Ahead Log (WAL) files -
primarily for crash-safety purposes. Such WAL files contain log records, which reflects all changes made to the data and
the schema. Prior to their transfer to the data files of the database the log records are stored in the (sequentially written)
WAL file. In the case of a system crash those log records are used to recover the cluster to a consistent state during
restart. The recover process searches the timestamp of the last checkpoint and replays all subsequent log records in
chronological order against this version of the cluster. Through that action the cluster gets recovered to a consistent state
and contains all changes up to the last COMMIT.

The existence of a physical backup, which is inconsistent by definition but contains its WAL files, in combination with this recovery-from-
crash technique can be used for backup/recovery purposes. To implement this, you have to restore the previous taken physical backup
(including its WAL files). When the instance starts again, it uses the described recovery-from-crash technique and replays all log records in the
WAL files against the database files. In the exact same way as before, the cluster comes to a consistent state and contains all changes up to the
point in time when the backup-taken has started.

Please keep in mind, that physical backups work only on cluster level, not on any finer granularity like database or table.

Physical backups without PITR sometimes are called standalone hot physical backup.

Continuous 7x24 operation mode is possible.

Physical backup works only on cluster level, not on any finer granularity like database or table.
Without PITR (see below) you will lose all data changes between the time, when the physical backup is taken, and the
crash.

To use this technique it is necessary to configure some parameters in the postgres.conf file for WAL and archive actions. As the usual
technique is Physical Backup plus PITR we describe it in the next chapter.

pg_dumpall

Advantages

Disadvantages

How to Recover

Physical Backup

Advantages

Disadvantages

How to Take the Backup and Recover

Physical Backup plus PITR

The term PITR stands for Point In Time Recovery and denotes a technique, where you can restore the cluster to any point in time between the
creation of the backup and the crash.

The Physical Backup plus PITR strategy takes a physical backup plus all WAL files, which are created since the time of taking this backup.
To implement it, three actions must be taken:

Define all necessary parameters in postgres.conf
Generate a physical backup
Archive all arising WAL files

If a recovery becomes necessary, you have to delete all files in the cluster, recreate the cluster by copying the physical backup to its original
location, create the file recovery.conf with some recovery-information (especially to what location WAL files have been archived) and restart
the instance. The instance will recreate the cluster according to its parameters in postgres.conf and recovery.conf to a consistent state including
all data changes up to the last COMMIT.

Continuous 7x24 operation mode is possible.
Recover with minimal data loss.
Generating WAL files is the basis for additional features like replication.

Physical backup works only on cluster level, not on any finer granularity like database or table.
If your database is very busy and changes a lot of data, many WAL files may arise.

You have to define some parameters in postgres.conf so that: WAL files are on the level 'archive' or higher, archiving of WAL files is
activated and a copy command is defined to transfers WAL files to a fail-safe location.

collect enough information in WAL files
wal_level = 'archive'
activate ARCHIVE mode
archive_mode = on
supply a command to transfer WAL files to a failsafe location (cp, scp, rsync, ...)
%p is the pathname including filename. %f is the filename only.
archive_command = 'scp %p dba@archive_server:/postgres/wal_archive/%f'

After the parameters are defined, you must restart the cluster pg_ctl restart. The cluster will continuously generate WAL files in its
subdirectory pg_wal (pg_xlog in Postgres version 9.x and older) in concordance with data changes in the database. When it has filled a WAL
file and must switch to the next one, it will copy the old one to the defined archive location.

You must create a physical or base backup with an operating system utility during the instance is in a special 'backup' mode. In this mode the
instance will perform a checkpoint and create some additional files.

$ # start psql and set the instance to 'backup' mode, where it creates a checkpoint
$ psql -c "SELECT pg_start_backup('AnyBackupLabel');"
$
$ # copy the cluster's files
$ scp -r $PGDATA dba@archive_server:/postgres/whole_cluster/
$
$ # start psql again and finish 'backup' mode
$ psql -c "SELECT pg_stop_backup();"
$

If you like to do so, you can replace the three steps by a single call to the utility pg_basebackup.

That's all. All other activities are taken by the instance, especially the continuous copy of completely filled WAL files to the archive location.

Advantages

Disadvantages

How to Take the Backup

Step 1

Step 2

Step 3

How to Recover

To perform a recovery the original physical or base backup is copied back and the instance is configured to perform recovery during its start.

Stop the instance - if it is still running.
Create a copy of the crashed cluster - if you have enough disc space. Maybe, you will need it in a later stage.
Delete all files of the crashed cluster.
Recreate the cluster files from the base backup.
Create a file recovery.conf in $PGDATA. It must contain a command similar to: restore_command = 'scp
dba@archive_server:/postgres/wal_archive/%f %p'. This copy command is the reverse of the command in postgres.conf,
which saved the WAL files to the archive location.
Start the instance. During startup the instance will copy and process all WAL files found in the archive location.

The fact, that recovery.conf exists, signals the instance to perform a recovery. After a successful recovery this file is renamed.

If you want to recover to some previous point in time prior to the occurrence of the crash (but behind the creation of the backup), you can do
so by specifying this point in time in the recovery.conf file. In this case the recovery process will stop before processing all archived WAL
files. This feature is the origin of the term Point-In-Time-Recovery.

In summary the recovery.conf file may look like this:

restore_command = 'scp dba@archive_server:/postgres/wal_archive/%f %p'
recovery_target_time = '2016-01-31 06:00:00 CET'

There is an open source project Barman [1], which simplifies the steps of backup and recovery. The system helps you, if you have to manage
a lot of servers and instances and it becomes complicate to configure and remember all the details about your server landscape.

1. Barman [9] (http://www.pgbarman.org/)

Additional Tools

References

http://www.pgbarman.org/

Architecture
PostgreSQL implements a client-server architecture. Each Client process connects to one Backend process at the server site.

Clients do not have direct access to database files and the data stored in them. Instead, they send requests to the Server and receive the
requested data from there. The server launches a single process for each client connection. Such a Backend process handles the client's
requests by acting on the Shared Memory. This leads to other activities (file access, WAL, vacuum, ...) of the Instance. The Instance
is a group of server-side processes acting on the common Shared Memory. PostgreSQL does not use threading.

At startup time, the Instance is launched by a single process denoted the Postmaster. It loads configuration files, allocates Shared
Memory, and starts the other collaborating processes of the Instance: Background Writer, Checkpointer, WAL Writer, WAL
Archiver, Autovacuum, Statistics Collector, Logger, and more. Subsequently, the Postmaster listens to its configured
system port. In response to new client connection attempts he launches new Backend processes and delegates authentication, communication,
and the handling of all further requests to them. The next figure visualizes the main aspects of RAM, processes, files, and their collaboration.

Client requests like SELECT or UPDATE usually lead to the necessity to read or write data. This is carried out by the client's Backend
process. Such I/O-activities are not done directly on the disks. Instead, they are done in a cache in the Shared Memory that mirrors the file
pages. Accesses to such caches are much faster than accesses to disk. Read accesses affect only the cache whereas write accesses are
accomplished by writing to a log, the so-called write-ahead-log or WAL.

Shared Memory is limited in size and it can become necessary to evict pages. As long as the content of such pages hasn't changed, this is not
a problem. But they may be modified. Modified pages are called dirty pages (or dirty buffers) and before they can be evicted they must be
written back to disk. The Background Writer processes and the Checkpointer takes care of that. They ensure that the cache is - after a short
time delay - in sync with files. The synchronization from RAM to disk consists of two steps.

First, whenever the content of a page changes, a WAL record is created containing the delta-information (difference between the old and
new content) and stored in another area of Shared Memory. During a COMMIT or earlier the WAL Writer process reads them and appends
them to the end of the current WAL file. Such sequential writes are faster than writes to random positions of heap and index files. All
WAL records created from one dirty page must be transferred to disk before the dirty page itself can be transferred to disk in the second step.

https://en.wikipedia.org/wiki/client-server_architecture
https://en.wikibooks.org/wiki/File:PostgreSQL%27s_Internal_Architecture.svg

Second, the Background Writer process transfers dirty buffers from Shared Memory to files. Because I/O activities can block other processes,
it starts periodically and acts only for a short period. Doing so, its extensive - and expensive - I/O activities are spread over time, avoiding
debilitating I/O peaks. The Checkpointer process also transfers dirty buffers to file.

The Checkpointer process creates a Checkpoint by writing and flushing all older dirty buffers, all older WAL records, and finally a
special Checkpoint record to disk. Therefore a Checkpoint is a point in the sequence of transactions at which it is guaranteed that the heap
and index files have been updated with all dirty pages before that Checkpoint.

WAL files contain the changes made to the data. Such 'delta information' is used in the case of a system crash for recovery (database backup
+ WAL files --> database immediately before the crash). Hence, WAL files shall be duplicated and preserved at a safe place until the next
database backup is taken. This is the duty of the WAL Archiver process. He can be configured to run a script that copies WAL files, as soon
as they are full and a switch to the next one takes place. Of course, such copies should be done to a separate disk or server for security
reasons. But it's also a good idea to store the original WAL files on a different disk than heap and index files. Such a separation boosts
performance. It can be done using a symbolic link pointing from the original WAL directory to a directory at a different disk.

The Autovacuum process marks old versions of records in the heap and index files that are no longer used by any transaction as 'finally
deleted'. Hence it releases the space occupied by them for reuse. The need for such a process results from the MVCC architecture.

The Statistics Collector collects counters about accesses to SQL objects like tables, rows, indexes, pages, ... and stores them in system tables.

The Logger writes text lines about more or less serious events that may happen during database accesses, e.g., wrong password, no
permission, long-running queries, etc. to a sequential file.

Architecture Cluster

A Server, which is some hardware, a container, or a VM, contains one or more Database Clusters (Cluster for short). Every cluster is
controlled by exactly one instance. If there are many clusters and instances on the same server, the ports of the instances must differ from each
other as well as the root directories of the clusters.

Each newly created cluster contains the three databases template0, template1, and postgres, each of the three databases contain the
schema public as well as the system schemas pg_catalog, information_schema, pg_temp, and some more. Tables, views, and most other
SQL objects reside in such schemas. DBAs can create more clusters, databases, schemas, or SQL objects.

Clusters are created with the command initdb. template0 is the very first database during the creation phase of any cluster. In a second
step, database template1 is generated as a copy of template0, and finally database postgres is generated as a copy of template1. Later, the
DBA can create more databases within that cluster, e.g.: my_db, with the command createdb. Just like at the beginning, the new database
will be a copy of template1. Due to the unique role of template0 as the pristine original of all other databases, no client is allowed to connect
to it and modify it. But the DBA can change template1.

Overview

Initialization Phase

Connections

https://en.wikibooks.org/wiki/File:PostgreSQL_cluster_db_schema.svg

Client connections act at the database level and can access data and SQL objects within any schema of the connected database, as far as they
are permitted to do so. If they need access to any object of a different database within the same or another cluster, special techniques like
foreign-data wrapper (FDW) or dblink are required (or they use multiple connections and synchronize them at the client-side).

We use the term SQL object for all objects which you can create with the SQL command CREATE ..., e.g.: database, schema, table,
view, materialized view, index, constraint, sequence, function, procedure, trigger, role, data type, domain, operator, tablespace, extension,
foreign-data wrapper, and much more. Such SQL objects are arranged in a hierarchical manner:

Database names, tablespaces, and roles (users) are known at the cluster level. E.g.: As mentioned above, a connection
works at the database level. Nevertheless, when you create a new role with such a connection, the role is also known by
all other databases of the same cluster.

Extensions, e.g.: PostGIS, reside at the database level. After installing an extension, all schemas of this database can use
it. But within the other databases of the same cluster, the extension is not known.

Schemas are part of a database. Some of them are predefined.

pg_catalog is a schema with tables that describe most of the SQL objects of that database, especially all tables and
views. They even describe themself. information_schema is a similar schema. It contains several tables and views of
pg_catalog in a way that conforms to the SQL standard.
public acts as the default schema. It should not contain user-defined SQL objects. Instead, it is recommended to
create one or more additional schemas to manage application-specific objects like tables or triggers. To access
objects in such additional schemas they can be fully qualified, e.g. my_schema.my_table, or by changing the
search_path.
There are different types of SQL objects within a schema: 'relation'-like objects (table, view, materialized view, index,
sequence, foreign-table), function, procedure, trigger, constraint, data type, domain, operator, and more.

SQL objects in one schema are different from SQL objects in different schemas, even if they use the same
name, e.g.: table t1 in my_schema1 is different from t1 in my_schema2.
The names of 'relation'-like objects, data types, and domains are unique within their schema: e.g.: you cannot
have a table emplyee and a view employee in the same schema.

SQL objects

https://en.wikibooks.org/wiki/File:PostgreSQL_objects_hierarchy.svg

Architecture Directories
PostgreSQL organizes durable (persistent) data as well as volatile state information about transactions or replication actions in the file system.
Every cluster has its root directory somewhere in the file system. In many cases, the environment variable PGDATA points to this directory.
The following graphic uses data, which is the default, as the name of the cluster's root directory.

The cluster's root directory contains many subdirectories and some files, all of which are necessary to store durable as well as temporary
information. The root's name can be selected as desired, but the names of its subdirectories and files are constant respectively determined by
PostgreSQL. The following paragraphs describe the most important subdirectories and files.

base contains one subdirectory per database. The names of those subdirectories consist of numbers. These are the internal Object Identifiers
(OID), which are numbers to identify their definition in the System Catalog.

Within the database-specific subdirectories of base, there are many files: one or more for every heap and index. Again, the filenames consist
of numbers. Those files are accompanied by files for the Free Space Maps (suffixed _fsm) and Visibility Maps (suffixed _vm), which contain
optimization information. An example for filenames is: 3083, 3083_fsm, 3083_vm.

Another subdirectory is global. It contains files with information about SQL Objects which are not restricted to a certain schema, but known
and relevant at the schema level.

In pg_tblspc, there are symbolic links that point to directories that are outside of the root directory tree, e.g. at a different disk. Heap and index
files of non-default tablespaces reside there. Those defined within the default tablespace reside in the database-specific subdirectories.

The subdirectory pg_wal contains the WAL files. They arise and grow in parallel with data changes in the cluster and remain as long as they
are required for recovery, archiving, or replication.

The subdirectory pg_xact contains information about the status of each transaction: in_progress, committed, aborted, or sub_committed.

https://en.wikibooks.org/wiki/File:PostgreSQL_directories.svg

In the root directory, there are some files. In many cases, the configuration files of the cluster are stored here. Also, if the instance is up and
running, the file postmaster.pid exists here (by default, but other locations are possible). It contains the process ID (pid) of the Postmaster
process which has started the instance and controls it.

Transactions
All data-changing operations like INSERT, UPDATE, or DELETE must run within a surrounding construct which is called a
TRANSACTION. Transactions are created with the SQL command BEGIN and finished with either COMMIT or ROLLBACK. During the
lifetime of the transaction the changes to the database are written only preliminarily. At the end, COMMIT finishes the transaction regularily
and commits all intended data changes, or ROLLBACK aborts the transaction and reverts all those preliminary changes.

In addition to this explicit usage of SQL keywords to manage transactions, some of PostgreSQL's client libraries create implicitly a new
transaction if one of the data-changing operations doesn't run in an explicitly created transaction. In this case, the operation is automatically
committed immediately after its execution.

Hint: When working within a procedure or function, there is a DECLARE ... BEGIN ... END; construct to define 'blocks'. In this context the
meaning of BEGIN (no semikolon after BEGIN!) differs from what is explained here. You can avoid the ambiguity by using the keywords START
TRANSACTION; as an alternative for BEGIN; in the context of transactions. Besides that, START TRANSACTION; conforms to the SQL
standard.

Transactions generate a great relief for applications. Especially for business logic that must execute many statements as a consistent unit - like
the above money transfer from one bank account to another -, there is no need to take individual actions after an error occurred in the middle
of a transaction. In many cases it's enough to restart the transaction or to handle errors in a unified way.

Transactions in PostgreSQL guarantee that all requirements of the ACID paradigm are fulfilled, see next chapter.

Within a transaction the keyword SAVEPOINT defines and denotes a position, to which the transaction may be rolled-back.

BEGIN; -- establish a new transaction
UPDATE accounts SET balance = balance - 100.00 WHERE name = 'Alice';
UPDATE accounts SET balance = balance + 100.00 WHERE name = 'Bob';
COMMIT; -- finish the transaction

-- this UPDATE runs as the only command of an implicitly created transaction ...
UPDATE accounts SET balance = balance - 100.00 WHERE name = 'Alice';

-- ... and this one runs in another transaction
UPDATE accounts SET balance = balance + 100.00 WHERE name = 'Bob';

Sub-Transactions

-- The transaction will insert the values 1 and 3, but not 2.
BEGIN;
INSERT INTO my_table VALUES (1);
SAVEPOINT my_savepoint;
INSERT INTO my_table VALUES (2);
ROLLBACK TO SAVEPOINT my_savepoint;
INSERT INTO my_table VALUES (3);
COMMIT;

https://en.wikibooks.org/wiki/PostgreSQL/ACID

ACID
The ACID paradigm is a cornerstone of database management systems. With respect to data modifications, the paradigm demands that
transactions must fulfill certain requirements and have to guarantee that they are satisfied not only during regular operations but also in all
cases of minor and major problems like mutual-locking, connection-loss, server-down, disk-full, disk-crash,

Please note especially that the requirements are defined at the transaction level. They are named:

Atomicity
Consistency
Isolation
Durability

As shown in the previous chapter every single write operation or a collection of write operations is embedded in a transaction. Read
operations may also be part of a transaction.

All writing operations within a transaction create a single, undividable unity. Either all of them succeed or none. Writing operations to
different tables are an example of such a situation. Another example is the decrease of one person's bank account and the associated increase
of another bank account during a money transfer.

At the end of a transaction, the database is in a consistent state. All defined integrity rules like uniqueness, check constraints, foreign-key and
primary-key definitions are fulfilled. Furthermore, all involved triggers have been successfully executed. It's possible that during the lifetime
of a transaction those rules may be broken, e.g. the foreign key relationship of two nodes in a doubly-linked list.

In essence, a transaction transfers the database from one consistent state to another consistent state.

In many cases, transactions run in parallel. But the database system gives them the illusion that they act one after the other. Depending on the
chosen isolation level, the exact behavior of competing read and write operations may differ. Nevertheless, PostgreSQL guarantees in all
cases, that read operations never block write operations and write operations never block read operations.

Durability guarantees that after a successful termination (COMMIT) of a transaction, the carried-out changes keep in the database, even if a
significant problem like a disk crash occurs. PostgreSQL implements this by saving the data changes not only in the data files but - redundant
- also in Write-Ahead-Log (WAL) files. Therefore it is recommended that data and WAL files shall be stored on different disks.

Atomicity

Consistency

Isolation

Durability

https://en.wikipedia.org/wiki/ACID
https://en.wikibooks.org/w/index.php?title=PostgreSQL/Transaction&action=edit&redlink=1
https://en.wikipedia.org/wiki/doubly_linked_list

Visibility

It's obvious that every transaction 'sees' all data changes, it has been carried out during its lifetime, without problems. But there are situations
where more than one process wants to read or write the same data during an overlapping time interval of their transactions or even at the
same point in time, which is possible on servers with multiple CPUs or a disk array. In such cases, different types of conflicts and suspicious
effects may occur.

Applications may or may not accept the effects resulting from such competing situations. They can choose different levels of isolation against
the activities of other transactions depending on their needs. The level defines which effects they are willing to accept and which not. Higher
levels mean that fewer effects can occur but the database system must work harder and that the overall throughput decreases.

Here are some examples with two transactions TA and TB. Both don't perform a COMMIT if not explicitly noted.

TA reads the row with id = 1. TB reads the same row. TA increases column X by 1. TB increases the same column by 1.
What will be the result? There is the danger of a 'Lost update'.

TA changes a value of the row with id = 1. What shall TB see if it reads the same row? TA may perform a ROLLBACK.
(Uncommitted read)

TA reads the row with id = 1. TB reads the same row, changes a value and performs a COMMIT. TA reads the row again.
In comparison to its first read, it will see a different value. (Non-repeatable read)

TA reads all rows with status = 'ok'. TB inserts an additional row with status = 'ok' and performs a COMMIT. TA
reads all rows with status = 'ok' again and receives a different number of rows. (Phantom read)

TA reads and changes the row with id = 1. TB reads and changes the row with id = 2. TB wants to read and change
the row with id = 1. Because TA has not yet committed its changes, TB must wait for TA. TA wants to read and change
the row with id = 2. Because TB has not yet committed its changes, TA must wait for TB. (Deadlock)

The SQL standard describes the 3 effects (or problematic situations) 'Uncommitted read', 'Non-repeatable read', and 'Phantom read' and
defines 4 levels of isolation between transactions: READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ, and
SERIALIZABLE. Every level is stricter than its predecessor and prevents more effects, which means e.g. that a 'Non-repeatable read' is
possible in level READ COMMITTED but not in REPEATABLE READ or SERIALIZABLE.

PostgreSQL implements those levels (https://www.postgresql.org/docs/current/transaction-iso.html). But, as a consequence of its MVCC
model, it implements some aspects a little stricter than they are demanded by the standard. If a transaction requests the level READ
UNCOMMITTED, PostgreSQL handles it always as a READ COMMITTED, which leads to the overall behavior that all uncommitted
changes are invisible to all other transactions at any level - only committed changes can be seen by other transactions.

The following examples act on a table t1 with the two columns id and col and a single row.

The example shows that PostgreSQL solely shows committed rows to other transactions.

Transaction A Transaction B

Some exemplary Problems

PostgreSQL's Solutions

Examples

DROP TABLE IF EXISTS t1;
CREATE TABLE t1 (id INTEGER, col INTEGER);
INSERT INTO t1 VALUES (1, 100);
SELECT * FROM t1;
id | col
----+-----
 1 | 100
(1 row)

Uncommitted read

BEGIN;
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;
-- you can shorten the two commands into one:
-- BEGIN TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;

https://en.wikipedia.org/wiki/Isolation_(database_systems)#Dirty_reads
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Non-repeatable_reads
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Phantom_reads
https://en.wikipedia.org/wiki/Deadlock
https://www.postgresql.org/docs/current/transaction-iso.html

The example shows that PostgreSQL prevents 'lost update' in the lowest level of isolation - as well as in all other levels. (The table t1
contains its original values.)

Transaction A Transaction B

Both UPDATE statements are executed, nothing gets lost.

Please note that transaction B is an example for a 'non-repeatable read' (see below) because the isolation level is '(UN)COMMITTED
READ'. First, it reads the value '100' with its SELECT command. Next, it reads '101' with its UPDATE command - after COMMIT of
transaction A - and increases it to '102'. If the isolation level would be 'REPEATABLE READ', transaction B would receive the error
message 'could not serialize access due to concurrent update' as PostgreSQL's reaction to the UPDATE request.

The example shows a non-repeatable read. (The table t1 contains its original values.)

Transaction A Transaction B

UPDATE t1 SET col=101 WHERE id=1;
SELECT col FROM t1 WHERE id=1;
-- 101

-- 'READ UNCOMMITTED' acts equal to 'READ COMMITTED'
-- other transactions solely sees committed rows!
BEGIN TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;
SELECT col FROM t1 WHERE id=1;
-- 100 (the committed one!)

COMMIT;
SELECT col FROM t1 WHERE id=1;
-- 101

SELECT col FROM t1 WHERE id=1;
-- 101 (again: the committed one!)
COMMIT; -- no real effect
SELECT col FROM t1 WHERE id=1;
-- 101

Lost update

BEGIN TRANSACTION ISOLATION LEVEL READ COMMITTED;
SELECT col FROM t1 WHERE id=1;
-- 100
UPDATE t1 SET col=col+1 WHERE id=1;
SELECT col FROM t1 WHERE id=1;
-- 101

BEGIN TRANSACTION ISOLATION LEVEL READ COMMITTED;
SELECT col FROM t1 WHERE id=1;
-- 100
UPDATE t1 SET col=col+1 WHERE id=1;
-- UPDATE is queued and must wait for the
-- COMMIT of transaction A
.
.

COMMIT;

-- the above UPDATE executes after (!) the COMMIT
-- of transaction A
SELECT col FROM t1 WHERE id=1;
-- 102

Non-repeatable read

BEGIN TRANSACTION ISOLATION LEVEL READ COMMITTED;
SELECT col FROM t1 WHERE id=1;
-- 100

The example shows a phantom read. (The table t1 contains its original values.)

Transaction A Transaction B

The example shows a dead lock. (The table t1 contains two rows.)

Transaction A Transaction B

BEGIN TRANSACTION ISOLATION LEVEL READ COMMITTED;
UPDATE t1 SET col=101 WHERE id=1;
SELECT col FROM t1 WHERE id=1;
-- 101
COMMIT;

SELECT col FROM t1 WHERE id=1;
-- 101 (same transaction, but different value)
-- ' ISOLATION LEVEL REPEATABLE READ' or
-- 'SERIALIZATION' will avoid such an effect

Phantom read

BEGIN TRANSACTION ISOLATION LEVEL READ COMMITTED;
SELECT col FROM t1 WHERE id>0;
-- 1 row: 100

BEGIN TRANSACTION ISOLATION LEVEL READ COMMITTED;
INSERT INTO t1 VALUES (2, 200);
COMMIT;
SELECT col FROM t1 WHERE id>0;
-- 2 rows: 100 and 200

SELECT col FROM t1 WHERE id>0;
-- 2 rows: 100 and 200
-- (same transaction, same query, but different rows)
-- ' ISOLATION LEVEL SERIALIZABLE'
-- will avoid such an effect

Dead lock

DELETE FROM t1;
INSERT INTO t1 VALUES (1, 100);
INSERT INTO t1 VALUES (2, 200);

BEGIN TRANSACTION ISOLATION LEVEL READ COMMITTED;
UPDATE t1 SET col=col+1 WHERE id=1;
SELECT col FROM t1 WHERE id=1;
-- 101

BEGIN TRANSACTION ISOLATION LEVEL READ COMMITTED;
UPDATE t1 SET col=col+1 WHERE id=2;
SELECT col FROM t1 WHERE id=2;
-- 201

UPDATE t1 SET col=col+1 WHERE id=1;
.
.
-- must wait for COMMIT/ROLLBACK of transaction A

UPDATE t1 SET col=col+1 WHERE id=2;
-- must wait for COMMIT/ROLLBACK of transaction B.
--
-- PostgreSQL detects the deadlock and performs a
-- ROLLBACK to overcome the circular situation.
-- message: "ERROR: deadlock detected ..."

-- processing goes on with a 'success message'
SELECT col FROM t1 WHERE id>0;
-- 101
-- 201
-- no UPDATEs from transaction A. They were
-- ROLLBACK-ed by PostgreSQL.

MVCC
In nearly all cases, PostgreSQL databases must support many clients, which want to add or change data, at the same time. This makes it
necessary to protect concurrently running requests from each other - preferably without blocking them. Situations may occur where two
clients want to change the same row at the same time or that one client wants to revoke (rollback) his changes while another client may still
have tried to read the newest version.

Imagine an Online shop offering the last copy of an article. Two clients display the article at their user interface. After a while, but at the same
time, both clients decide to put the article into their shopping cart or even to buy it. Both have seen the article, but only one can be allowed to
buy it. The database must enforce an order of the requests, permit the write access to one of them, block the other from writing, and inform
the blocked client that the data has been changed by a different process and shall be re-read.

PostgreSQL implements a sophisticated technique to handle concurrent accesses that avoids locking: Multiversion Concurrency Control
(MVCC). Instead of locking a row, the MVCC technique creates a new version of that row when a data change takes place. "The
main advantage of using the MVCC ... rather than locking is that in MVCC locks acquired for querying (reading) data do not conflict with
locks acquired for writing data, and so reading never blocks writing and writing never blocks reading. PostgreSQL maintains this guarantee
even when providing the strictest level of transaction isolation through the use of ... Serializable Snapshot Isolation (SSI)". [1]

The implementation of MVCC is based on transaction IDs (XID). Every transaction in a cluster gets a unique sequential number as its ID.
Every INSERT, UPDATE, or DELETE command stores the XID in xmin or xmax within the affected rows. xmin, xmax, and some
more are system columns contained in every row. Both are not visible with the usual SELECT * FROM ... command. But you can
read them with commands like SELECT xmin, xmax, * FROM The column xmin contains the XID of the transaction
which has created this version of the row and xmax contains the XID of the transaction which has deleted this version, or zero if the version
is not deleted.

So, what's going on in detail when write accesses take place? The following graphic shows details concerning xmin, xmax, and the regular
application data.

An INSERT command creates the very first version of a row. Besides its application data 'x', this version contains the ID of the creating
transaction 123 in xmin and 0 in xmax. xmin indicates that the version exists since transaction 123 and the value 0 in xmaxindicates that
it is currently not deleted.

Somewhat later, transaction 135 executes an UPDATE of this row by changing the application data from 'x' to 'y'. According to the MVCC
principles, the data in the old version of the row is not changed. The value 'x' remains as it was before. Only xmax changes to 135. Now,
this version is treated as valid exclusively for transactions with XIDs from 123 to 134. In addition to preserve the data in the old version, the
UPDATE creates a new version of the complete row with its XID in xmin, 0 in xmax, and 'y' in the application data (plus all other
application data from the old version). This new row version is visible to all future transactions. (Internally, an UPDATE command acts as a
DELETE command followed by an INSERT command.)

All subsequent UPDATE commands behave in the same way as the first one: they put their XID in xmax of the current version, create a new
version with their XID in xmin and 0 in xmax.

Finally, a row may be deleted by a DELETE command. Even in this case, all versions of the row including the newest one remain in the
database - nothing is thrown away. Only xmax of the last version is set to the XID of the DELETE transaction, which indicates that it is only
visible to transactions with older XIDs - in this example from 142 to 820.

In summary, the MVCC technology creates more and more versions of the same row in the table's heap file and leaves them there, even after
a DELETE command. Only the youngest version is relevant for all future transactions. But the system must also preserve some of the older
ones for a short time because they could still be requested by transactions that had started before the deleting transaction and hence have a
smaller XID. Over time, also the older ones goes out of scope for ALL transactions and therefore become ultimately unnecessary.
Nevertheless, they do exist physically on the disk and occupy space. They are called dead rows and are part of the so-called bloat.

Please keep in mind:

xmin and xmax indicate the range in which row versions are visible for transactions. This range doesn't imply any direct
temporal meaning. The sequence of XIDs reflects only the sequence of transactions' begin events.
Internally, an UPDATE command acts in the same way as a DELETE command followed by an INSERT command.

https://en.wikipedia.org/wiki/Snapshot_isolation
https://en.wikibooks.org/wiki/File:PostgreSQL_mvcc.svg
https://en.wikibooks.org/wiki/PostgreSQL/Vacuum

Nothing is removed - with the consequence that the database occupies more and more disk space. It is obvious that this
behavior has to be corrected in some way. The next chapter explains how vacuum and autovacuum fulfill this task.

So far this is only a raw description of the principles of MCVV. The implementation considers more problems, e.g.:

Changes may be revoked by a ROLLBACK command.
After some time the sequence of XIDs may start from zero (wrap-around). In this case xmax can be smaller than xmin.

XIDs are sequences (with a reserved value to handle wrap-around in pre-9.4 PostgreSQL versions). PostgreSQL knows some configuration parameters concerning
transactions and their XIDs with names like xxx_age, e.g.: vacuum_freeze_min_age. For such parameters, the 'age' doesn't specify a period of time but represents a
certain number of transactions, e.g., 100 millions.

1. MVCC in PostgreSQL [https://www.postgresql.org/docs/current/mvcc-intro.html

Note

References

https://www.postgresql.org/docs/current/mvcc-intro.html

Vacuum

As we have seen in the MVCC chapter, the database tends to occupy more and more disk space caused by bloat: over time more and more
logically deleted but physically existing old versions of rows arise within heap and index files. This chapter explains how the SQL command
VACUUM and the automatically running Autovacuum processes clean up files and thereby prevent their endless growth.

One process of the Instance is the Autovacuum daemon. It continuously monitors the state of all databases based on values that are collected
by the Statistics Collector and starts Autovacuum processes whenever it detects certain situations, e.g.: a huge number of modifications within
a table. This leads to the intended dynamic behavior of PostgreSQL: Only when it is necessary, Autovauum cleans up the files. In addition,
client processes can issue the SQL command VACUUM at any time. DBAs do this interactively when they recognize critical situations, or
they start it in periodically running batch jobs. In most cases, this is not necessary because of the constantly running Autovacuum daemon.

The central value to determine which of the physically existing row versions are no longer needed is xmax, which shows what transaction
has deleted the row. The elimination operation must evaluate it against several criteria which must all apply:

xmax must be different from zero because a value of zero indicates that the row version is not deleted.
xmax must contain an XID which is older than the oldest XID of all currently running transactions. That guarantees that no
existing or upcoming transaction will have read or write access to this row version.
The transaction of xmax must be committed. If it is still running or was rollback-ed, this row version is treated as valid (not
deleted).
If there is a situation that the row version is part of multiple transactions, more actions must be taken.

When the vacuum operation detects such an outdated row version, it marks its space as free for future use of write actions, optimizes the
physical arrangement of the remaining versions on the page, and removes index tuples pointing to the removed row version. But only in rare
situations (or in the case of VACUUM FULL), this space is released to the operating system. In most cases, it remains occupied by the
database and will be used by future INSERT, UPDATE or DELETE commands. Hence, even with successful running Autovacuum, the size
of files does not shrink; but they have more respectively huger 'holes' where coming data can be stored. Only after this 'hole-space' is
exhausted (per page), it gets necessary to claim new disc space from the operating system to store new data.

An exception to this conservative behavior is the SQL command VACUUM FULL. It creates a new file at the operating system level, copies
all valid row versions to it with no extra space by ignoring the 'holes', and deletes the old file. But it is slower and requires an exclusive lock
on the affected tables.

Because vacuum operations typically are I/O intensive, which can hinder other activities, Autovacuum avoids performing many vacuum
operations in bulk. Instead, it carries out many small actions with time delays in between. The SQL command VACUUM runs immediately
and without any time delay.

VACUUM, as well as Autovacuum, don't just eliminate bloat. They perform additional tasks for minimizing future I/O activities of
themselves as well as of other processes. This extra work can be done in a very efficient way since in most cases the expensive physical
access to pages has taken place anyway. The additional operations are:

Freeze: It marks certain row versions as frozen. This means that they are treated as 'valid' (visible) forever, independent
from the wraparound problem (see later).
Visibility Map and Free Space Map: It logs information about the state of the handled pages in two additional files, the
Visibility Map and the Free Space Map.
Statistics: Similar to the Statistics Collector it collects statistics about the number of rows per table, the distribution of
values, and so on, as the basis for decisions of the query planner.

PostgreSQL Documentation concerning VACUUM (https://www.postgresql.org/docs/current/routine-vacuuming.html)

Eliminating Bloat

More Actions

External links

https://en.wikibooks.org/wiki/PostgreSQL/MVCC
https://www.postgresql.org/docs/current/routine-vacuuming.html

Wraparound and Freeze

Transactions are identified by ids which are realized as unsigned 32-bit integers and named XID.
Transactions and their XIDs are known at the cluster level, covering all databases. Similar to
sequences, XIDs are incremented by for every new transaction. Sooner or later, this limited space
of numbers is exhausted, and it becomes necessary to restart the sequence from the beginning
(the values 0, 1, and 2 are skipped because they are reserved for particular purposes). This restart of
XIDs is called a wraparound and each cycle an epoch.

It's unlikely that more than transactions exist in a cluster at the same time or that a single
transaction lasts for such a long time that its XID collides with the same value of the next cycle. At
first glance, this cyclic usage of the ' Universe' seems to be safe and easy to implement.
Nevertheless, huge problems will arise with this simple strategy. The reason is that XIDs are stored in
system columns within every row (see xmin, xmax in the MVCC chapter). And rows stay for a
very long time in the database, in many cases forever.

The first problem is that after a wraparound, the next XIDs (3, 4, 5, ...) may collide with XIDs of the previous epoch. They are no longer
unique because system columns of old rows may contain the same values. But transactions must be able to decide whether retrieved rows are
modified (by other transactions) after their own start-time or a long time ago. We call this first problem XID Collision.

The second problem correlates with MVCC and the timeline of transactions. Rows may exist in multiple versions. When a transaction
modifies a row and stays alive a little longer - no COMMIT or ROLLBACK because of more activities -, other processes shall 'see' the
version of the row as of the start-time of the transaction and not the uncommited modification. Hence, a mechanism must hide the ongoing
changes and give other transactions the feeling of a stable data environment. The system realizes this by considering additional criteria with
every SQL command, especially - but not only - the system column xmin.

You can imagine of those additional criteria that the system silently supplements every query with the predicate xmin < my_xid. (This is
only an illustration in pseudo-code, the real implementation is different.) It guarantees that changes happening after the start of the requesting
transaction are invisible to it.

So far, so good.

But what will happen after a wraparound? The next transactions will have very small XIDs, e.g., '5'. And what will be the result of an xmin
< 5? Near nothing. All rows with xmin between and are no longer part of any query. In contrast to the situation a few moments
ago, all data suddenly disappeared. It is still in the database, but it is unreachable. We call this second problem Sudden Death.

Two Fundamental Problems

XID Collision

Sudden Death

Solution

https://en.wikibooks.org/wiki/File:PostgreSQL_xid_cycle_simple.svg
https://en.wikibooks.org/wiki/PostgreSQL/MVCC
https://en.wikibooks.org/wiki/File:PostgreSQL_xid_cycle.svg
https://en.wikibooks.org/wiki/PostgreSQL/MVCC

Step 1: At the conceptual level, the full ' Universe' is divided into two halves of numbers. One split point is the current transaction id
pg_current_xact_id (it was called txid_current before PostgreSQL version 13) and the other is the opposite side of the circle
pg_current_xact_id + (or pg_current_xact_id - what is the same). So, the split points are not fixed values but
follow dynamically the ongoing of new transactions. One halve represents the previously used and therefore exhausted XIDs; the other halve
such XIDs, which are - per definition - free. They will be allocated in the future. Please note the dynamic aspect: with every new transaction
in the cluster pg_current_xact_id and the border between 'past / future' moves forward. This is a metaphor of an endless walk
through time where after some time the old problems will be forgotten or at least idealized.

The idea can be realized by a modification of the above xmin < my_xid predicate to an if/else block:

if (my_xid <)
 return rows with: xmin < my_xid OR xmin > my_xid +
else

 return rows with: xmin < my_xid AND xmin > my_xid +

Of course, this is a simplification and many other criteria like COMMIT status, 'is deleted', and other things must be considered. It focuses
purely on the aspect of the 'past / future' metaphor.

Note: With this algorithm the 'critical point' changes from resp. to pg_current_xact_id + . It is called the wraparound point and the line between
pg_current_xact_id + and pg_current_xact_id the wraparound horizon.

Step 2: The outlined algorithm ensures the visibility of 50% of all possible XIDs. But what's going on with the others? As mentioned, rows
may stay in the database forever holding very old XIDs in xmin. This halve must also be considered. The idea of how to access the
complete range of possible XIDs is to complement the previous algorithm with the introduction of a flag that marks certain rows as 'visible
forever' (respectively visible until the next write operation to them). This marking is not possible as long as one or more transactions
potentially get write access to them. Fortunately, the sequence of new XIDs goes strictly forward, and overtime transactions with old XIDs
finish. PostgreSQL does not only know, which is the current XID pg_current_xact_id, but also which is the oldest active XID per
connection (pg_stat_activity.backend_xmin), and which is the lower bound of all unfrozen XIDs per table (pg_class.relfrozenxid) and per
database (pg_database.datfrozenxid). Rows with xmin older than oldest(pg_stat_activity.backend_xmin) are candidates
for such a flag. No running transaction has or will get write access to them, only newer ones. According to MVCC, they will create a new
row version, this one keeps as it is.

It is one of the two main duties of VACUUM to perform this freezing. It marks the identified rows with a flag in their header t_infomask
as 'visible forever'. From this point on no comparisons with xmin take place. The rows are always treated as visible, even if they are part of
the 'future'. This marking is called FREEZE and the status of the row FROZEN.

Now the algorithm for retrieving rows changes to:

-- 'frozen' rows will always be returned
if (my_xid <)
 return rows with: frozen OR
 (xmin < my_xid OR xmin > my_xid +)
else
 return rows with: frozen OR

 (xmin < my_xid AND xmin > my_xid +)

With this extension, the two mentioned problems are solved. The system can generate XIDs even after a wraparound without risk of collision
with old XIDs. The old ones may exist, but they are not touched in any way. Second, the algorithm finds all relevant XIDs whether there was
a wraparound or not.

https://en.wikibooks.org/wiki/PostgreSQL/MVCC
https://en.wikibooks.org/wiki/File:PostgreSQL_freeze.svg

It is possible that a transaction - intentionally or by an error in an application - stays alive for a long time. Over time its XID becomes the
oldest one in the complete cluster and can be retrieved from pg_stat_activity.backend_xmin. As long as this situation continues, the gap
between the ongoing wrapping point pg_current_xact_id + and pg_stat_activity.backend_xmin gets smaller and smaller. If the
gap would close completely, we would see all the problems described at the beginning of the chapter. This is called wraparound failure and
must be avoided under all circumstances. VACUUM is doing its best to freeze as many rows as possible. But if a long-living transaction
prevents freezing and the size of the gap falls below a certain limit, VACUUM runs in an 'aggressive mode' and works on all pages of
affected tables, independent from the above-mentioned values; if also this fails, the cluster stops the creation of new transactions and prevents
further write actions.

Note: These details can be skipped by a novice reader without losing the context of the ongoing chapters.

To freeze any row version, VACUUM must check several criteria:

xmax must be zero because only non-deleted rows can be visible forever.
xmin must be older than all currently existing transactions oldest(pg_stat_activity.backend_xmin). This
guarantees that no existing transaction can modify or delete the version.
The transactions of xmin and xmax must be committed.

At what point in time does the freeze operation take place? Please note that there are configuration parameters with names like xxx_age.
They define distances - mostly to pg_current_xact_id -, where the actions of VACUUM shall start. 'age' in this context doesn't imply
a certain period of time, it's always a pure number that counts transactions, e.g., 50 million. Please also note, that VACUUM always reads
complete physical pages and works on the row versions found there.

When a client issues the SQL command VACUUM with its FREEZE option. In this case, all pages of the affected tables
are processed that are marked in the Visibility Map as potentially having unfrozen rows.
When a client issues the SQL command VACUUM without any option and there are XIDs older than
vacuum_freeze_table_age (default: 150 million) minus vacuum_freeze_min_age (default: 50 million). As before, all pages
are processed that are marked in the Visibility Map to potentially have unfrozen rows.
When an Autovacuum process runs. Such a process acts in one of two modes: In the normal mode it skips pages with row
versions that are younger than vacuum_freeze_min_age (default: 50 million) and works only on pages where all XIDs are
older. The skipping of young XIDs prevents work on such pages, which are likely to be changed by one of the future SQL
commands. The process switches to an aggressive mode if it recognizes that for the processed table the oldest XID
exceeds vacuum_freeze_table_age (default: 150 million). In this aggressive mode, Autovacuum processes all pages of the
affected table.

VACUUM and Autovacuum know to which value the oldest unfrozen XID has moved forward per table and logs the value in
pg_class.relfrozenxid. The distance between this value and the pg_current_xact_id split point becomes smaller (there are potentially
unfrozen rows), and the distance to the wraparound point pg_current_xact_id + becomes larger (there are only frozen rows).
That is how the freezing follows the moving 'past' / 'future' horizon.

Note: Before version 9.4 of PostgreSQL, the freeze algorithm stored the value '2' (FrozenTransactionId) in xmin instead of setting a flag in t_infomask.

Wraparound Failure

Details

https://en.wikibooks.org/wiki/PostgreSQL/Visibility_Map_and_Free_Space_Map

Visibility Map and Free Space Map
Every table is stored in a separate disk file. The names of such files consist of numbers which are the internal Object Identifiers (OID) of the
table used in the System Catalog. Each such file is accompanied by a file for its Visibility Map and another one for its Free Space Map. They
have the same names expanded by the suffix '_vm' respectively '_fsm'. An example for such a triplet of filenames is: 3083, 3083_vm, and
3083_fsm.

The two additional files contain metainformation to optimize I/O activities to the original file - especially for vacuuming and freezing, but also
for other write activities. Because I/O works per physical page, the metainformation addresses complete physical pages, not any part of pages
like rows or versions.

The Visibility Map contains two flags — stored as two bits — for each page of the original file. The first bit indicates that the associated page
contains only valid row versions, i.e. there is no bloat to be vacuumed. The second bit indicates that the page only contains already frozen
row versions.

Please consider two details. First, in most cases a page contains many rows or row versions. However, both flags are associated with the
page, not with an individual row or row version. The flags are set only under the condition that they are valid for ALL row versions stored
on the page. Second, since there are only two bits per page (2 bits correlate to 8 kiloBytes, which is a relation of about 1 : 32.000), the
Visibility Map is considerably smaller than the original file.

VACUUM and Autovacuum set the flags. Every write operation on any row version of the page clears the flags.

The Visibility Map helps VACUUM and Autovacuum to save unnecessary I/O. When the first bit is set, it's unnecessary to read the original
page and check its content for removing bloat. It's clear that there is no bloat. Correspondingly, if VACUUM or Autovacuum have to perform
freezing of rows, they can skip pages where the second bit signals that the page only contains already frozen row versions - no freeze is
necessary.

The Free Space Map tracks the amount of free, unused space per page. It is organized as a highly condensed B-tree of (rounded) free space
size per page.

VACUUM and Autovacuum change the Free Space Map according to their write operations (marking of row versions as 'obsolete' and
rearranging the physical layout of pages). Other write operations consult the Free Space Map to locate pages with enough free space for the
intended write operations and change the Free Space Map afterward.

Visibility Map

Free Space Map

WAL

WAL (Write Ahead Logging) files are files, where changed data values are stored in a binary format. This is additional information and in
this respect it is redundant to the information in the database files. WAL files are a specific kind of 'diff' files.

Writing to WAL files is very fast as they are written always sequentially. In contrast to WAL files database files are organized in special
structures like trees, which possibly must be reorganized during write operations or which points to blocks at far positions. Thus writes to
database files are much slower.

For the mentioned performance reasons, when a client requests a write operation like UPDATE or DELETE the modifications to the data are
done in a special sequence and - in some parts - asynchronously to the client requests. First, data is written and flushed to WAL files. Second,
it is stored in shared buffers in RAM. Finally, it is written from shared buffers to database files. The client doesn't wait until the end of all
operations. After the first two very fast actions, he is informed that his request is completed. The third operation is performed asynchronously
at an later (or prior) point in time.

WAL files are collected in the directory pg_wal (pg_xlog in PostgreSQL versions prior to version 10). Depending on the write activities on
the database the total size of all WAL files may increase dramatically. Therefore the system must delete them when they are no longer needed.
WAL files are available for deletion after the changes in the shared buffers (which correlate to the content of the WAL files) are flushed to the
database files. As it is guarantied that this criterion is met after a CHECKPOINT, there are some dependencies between WAL file delete
operations and CHECKPOINTs:

You can define a limit for the total size of all files in the directory: max_wal_size. If it is reached, PostgreSQL performs an
automatic CHECKPOINT operation.
You can define a checkpoint_timeout in seconds. No later than this number of seconds, PostgreSQL performs an
automatic CHECKPOINT operation.

In both cases the shared buffers gets written to disc, a checkpoint-record is written to the actual WAL file and all older WAL files are ready to
be deleted.

The deletion of WAL files may be prevented by other criterion, especially by failing archive commands. max_wal_size is a soft limit and
may be exceeded in such situations.

Usage

Remove

ClientServerComm Client

Before a client program like createdb, psql, pg_dump, vacuumdb, ... can perform any action on a database, it must establish a connection to
that database (or cluster). To do so, it must provide concrete values for the essential boundary conditions.

The IP address or DNS name of the server, where the instance is running.
The port on this server, to whom the instance is listening.
The name of the database within the cluster (= IP/port combination).
The name of the user (= role) with which the client program wants to work
The password of this user.

You can specify these values in three different ways:

as explicit parameters of the client program
as environment variables
as a fixed line of text in the special file pgpass.

You can specify the parameters in the usual short (-) or long (--) format of createdb, psql, pg_dump, vacuumdb, and other standard
postgreSQL command line tools.

$ # Example
$ psql -h www.dbserver.com --port=5432

The parameter names and their meanings are:

Short Form Long Form Meaning

-h --host IP or DNS

-p --port port number (default: 5432)

-d --dbname database within the cluster

-U --username name of the user

If necessary, the client program will prompt for the password.

As an alternative to the parameter passing you can define environment variables within your shell.

Environment Variable Meaning

PGHOST IP or DNS

PGPORT port number (default: 5432)

PGDATABASE database within the cluster

PGUSER name of the user

PGPASSWORD password of this user (not recommended)

PGPASSFILE name of a file where those values are stored as plain text, see below (default: .pgpass)

Instead of using parameters or environment variables as shown above you can store those values in a file. Use one line per definition in the
form:

 hostname:port:database:username:password

The default filename on UNIX systems is ~/.pgpass and on Windows:
C:\Users\MyUser\AppData\Roaming\postgresql\pgpass.conf. On UNIX systems the file protections must disallow
any access of world or group: chmod 0600 ~/.pgpass.

Parameters

Environment Variables

File 'pgpass'

You can create the file with any text editor. This is not necessary if you use pgAdmin. pgAdmin creates the file automatically after a
successful connection and stores the actual connection values.

ClientServerComm

All access to data is done by server (or backend) processes, to which client (or frontend) processes must connect to. In most cases instances
of the two process classes reside on different hardware, but it's also possible that they run on the same computer. The communication
between them uses a PostgreSQL-specific protocol, which runs over TCP/IP or over UNIX sockets. It is implemented in the C library libpq.
For every incoming new connection the backend process (sometimes called the postmaster- process) creates a new postgres backend process.
This backend process gets part of the PostgeSQL instance, which is responsible for data accesses and database consistency.

The protocol handles the authentication process, client request, server responses, exceptions, special situations like a NOTIFY, and the final
regular or irregular termination of the connection.

Most client programs - like psql - use this protocol directly. Drivers like ODBC, JDBC (type 4), Perl DBI, and those for Python, C, C++, and
much more are also based on libpq.

You can find an extensive list of drivers at the postgres wiki [1] and some more commercial and open source implementations at the 'products'
site [2].

Clients must authenticate themselves before they get access to any data. This process has one or two stages. During the first - optional - step
the client gets access to the server by satisfying the operating system hurdles. This is often realized by delivering a public ssh key. The
authentication with PostgeSQL is a separate, independent step using a database-username, which may or may not correlate to an operating
system username. PostgreSQL stores all rules for this second step in the file pg_hba.conf.

pg_hba.conf stores every rule in one line, one rule per line. The lines are evaluated from the top of ph_hba.conf to bottom and the first
matching line applies. The main layout of these lines is as follows

local DATABASE USER METHOD [OPTIONS]
host DATABASE USER ADDRESS METHOD [OPTIONS]

Words in upper case must be replaced by specific values. Lower case words like local and host are key words. They decide, for which kind
of connection the rule shall apply: local for clients residing at the same computer as the backend (they use UNIX sockets for the
communication) and host for clients at different computers (they use TCP/IP). There is one notable exception. In the former case clients can
use the usual TCP/IP syntax --host=localhost --port=5432 to switch over to use TCP/IP. Thus the host syntax applies for
them.

DATABASE and USER have to be replaced by the name of the database and the name of the database-user, for which the rule will apply. In
both cases the key word ALL is possible to define, that the rule shall apply to all databases and respectively all database-users.

ADDRESS must be replaced by the hostname or the IP adress plus CIDR mask of the client, for which the rule will apply. IPv6 notation is
supported.

METHOD is one of the following. The thereby defined rule (=line) applies, if database/user/address combination is the first matching
combination in pg_hba.conf.

trust: The connection is allowed without a password.
reject: The connection is rejected.
password: The client must send a valid user/password combination.
md5: Same as 'password', but the password is encrypted.
ldap: It uses LDAP as the password verification method.
peer: The connection is allowed, if the client is authorized against the operation system with the same username as the
given database username. This method is only supported on local connections.

There are some more techniques in respect to the METHOD.

Some examples:

joe cannot connect to mydb - eg. with psql -, when he is logged in to the backend.
local mydb joe reject

Protocol

Driver

Authentication

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing#CIDR_notation

bill (and all other persons) can connect to mydb when they are logged in to the
backend without specifying any further password. joe will never reach this rule, he
is rejected by the rule in the line before. The rule sequence is important!
local mydb all trust

joe can connect to mydb from his workstation '192.168.178.10', if he sends
the valid md5 encrypted password
host mydb joe 192.168.178.10/32 md5

every connection to mydb coming from the IP range 192.168.178.0 - 192.168.178.255
is accepted, if they send the valid md5 encrypted password
host mydb all 192.168.178.0/24 md5

For the DATABASE specification there is the special keyword REPLICATION. It denotes the streaming replication process.
REPLICATION is not part of ALL and must be specified separately.

1. Driver Wiki [10] (https://wiki.postgresql.org/wiki/List_of_drivers)
2. Commercial and open source driver [11] (http://www.postgresql.org/download/products/2/)

References

https://wiki.postgresql.org/wiki/List_of_drivers
http://www.postgresql.org/download/products/2/

Security

PostgreSQL supports the concept of roles [1] to handle security issues within the database. Roles are independent from operating system
user accounts (with the exception of the special case peer authentication which is defined in the pg_hba.conf file).

The concept of roles subsumes the concepts of individual users and groups of users with similar rights. A role can be thought of as either an
individual database user, or a group of database users, depending on how the role is set up. Thus the outdated SQL command CREATE
USER ... is only an alias for CREATE ROLE Roles have certain privileges on database objects like tables or functions and can
assign those privileges to other roles. Roles are global across a cluster - not per individual database.

Often individual users, which shall have identical privileges, are grouped together to a user group and the privileges are granted to that group.

With the CREATE ROLE command you can assign the privileges SUPERUSER, CREATEDB, CREATEROLE, REPLICATION and
LOGIN to that role. With the GRANT command you can assign access privileges to database objects like tables. The second purpose of the
GRANT command is the definition of the group membership.

In addition to the roles created by the database administrator there is always the special role PUBLIC, which can be thought of as a role
which is a member of all other roles. Thus, privileges assigned to PUBLIC are implicitly given to all roles, even if those roles are created at a
later stage.

Roles can be listed with the following commands.

With SQL, this will display an additional set of postgreSQL default roles that group together sets of common access levels:

or the psql command:

select * from postgres.pg_catalog.pg_user

1. Concept of roles [12] (http://www.postgresql.org/docs/current/static/user-manag.html)

Roles

 -- ROLE, in the sense of a group of individual users or other roles
 CREATE ROLE group_1 ENCRYPTED PASSWORD 'xyz';
 -- assign some rights to the role
 GRANT SELECT ON table_1 TO group_1;
 -- ROLE, in the sense of some individual users
 CREATE ROLE adam LOGIN ENCRYPTED PASSWORD 'xyz'; -- Default is NOLOGIN
 CREATE ROLE anne LOGIN ENCRYPTED PASSWORD 'xyz';
 -- the link between user group and individual users
 GRANT group_1 TO adam, anne;

List existing roles

SELECT rolname FROM pg_roles;

\du

Users

References

https://en.wikibooks.org/wiki/PostgreSQL/ClientServerComm#Authentication
http://www.postgresql.org/docs/current/static/user-manag.html

Replication

Replication is the process of transferring data changes from one or many databases (master) to one or many other databases (standby) running
on one or many other nodes. The purpose of replication is

High Availability: If one node fails, another node replaces him and applications can work continuously.
Scaling: The workload demand may be too high for one single node. Therefore, it is spread over several nodes.

PostgreSQL offers a bunch of largely mutually independent concepts for use in replication solutions. They can be picked up and combined -
with only few restrictions - depending on the use case.

Events

With Trigger Based Replication a trigger (per table) starts the transfer of changed data. This technique is outdated and not
used.
With Log Based Replication such information is transferred, which describes data changes and is created and stored in
WAL files anyway.

Shipping

WAL-File-Shipping Replication (or File-based Replication) denotes the transfer of completely filled WAL files (16 MB) from
master to standby. This technique is not very elegant and will be replaced by Streaming Replication over time.
Streaming Replication denotes the transfer of log records (single change information) from master to standby over a TCP
connection.

Primary parameter: 'primary_conninfo' in recovery.conf on standby server.

Format

In Physical Format the transferred WAL records have the same structure as they are used in WAL files. They reflect the
structure of database files including block numbers, VACUUM information and more.
The Logical Format is a decoding of WAL records into an abstract format, which is independent from PostgreSQL versions
and hardware platforms.

Primary parameter: 'wal_level=logical' in postgres.conf on master server.

Synchronism

In Asynchronous Replication data is transferred to a different node without waiting for a confirmation of its receiving.
In Synchronous Replication the data transfer waits - in the case of a COMMIT - for a confirmation of its successful
processing on the standby.

Primary parameter: 'synchronous_standby_names' in postgres.conf on master server.

Standby Mode

Hot: In Hot Standby Mode the standby server runs in 'recovery mode', accepts client connections, and processes their
read-only queries.
Warm: In Warm Standby Mode the standby server runs in 'recovery mode' and doesn't allow clients to connect.
Cold: Although it is not an official PostgreSQL term, Cold Standby Mode can be associated with a not running standby
server with log-shipping technique. The WAL files are transferred to the standby but not processed until the standby starts
up.

Primary parameter: 'hot_standby=on/off' in recovery.conf on standby server.

Architecture
In contrast to the above categories, the two different architectures (Master/Standby and Multi-Master) are not strictly distinct from each other.
For example, if you focus on atomic replication channels of a Multi-Master architecture, you will also see a Master/Standby replication.

The Master/Standby architecture denotes a situation, where one or many standby nodes receive change data from one
master node. In such situations standby nodes may replicate the received data to other nodes, so they are master and
standby at the same time.
The Multi-Master architecture denotes a situation, where one or many standby nodes receive change data from many
master nodes.

Concepts

There are 3 main configuration files:

'postgres.conf'
'pg_hba.conf'
'recovery.conf'

The 'postgres.conf' is the main configuration file. It is used to configure the master site. Additional instances can exist on standby sites.

The 'pg_hba.conf' is the security and authentication configuration file.

The 'recovery.conf' was optional and contained restore and recovery configurations. As of PostgreSQL-12 it is no longer used and its
existence will prevent the server from starting. The recovery.conf settings as of PostgreSQL-12 can be set in postgres.conf.

Because the great number of possible combinations of concepts and correlating configuration values may be confusing at the beginning, this
book will focus on a minimal set of initial configuration values.

WAL files are generated anyway because they are necessary for recovery after a crash. If they are - additionally - used to shipp information to
a standby server, it is necessary to add some more information to the files. This is activated by choosing 'replica' or 'logical' as a value for
wal_level.

WAL parameters on MASTER's postgres.conf
wal_level=replica # 'archive' | 'hot_standby' in versions prior to PG 9.6
archive_mode=on # activate the feature
archive_command='scp ...' # the transfer-to-standby command (or to an archive location, which is the original
purpose of this command)

If you switch the shipping technique to streaming instead of WAL-file you must not deactivate WAL-file generating and transferring. For
safety reasons you may want to transfer WAL files anyway (to a platform different from the standby server). Therefore, you can retain the
above parameters in addition to streaming replication parameters.

The streaming activities are initiated by the standby server. When he finds the file 'recovery.conf' during its start up, he assumes that it is
necessary to perform a recovery. In our case of replication he uses nearly the same techniques as in the recovery-from-crash situation. The
parameters in 'recovery.conf' advice him to start a so-called WAL receiver process within its instance. This process connects to the master
server and initiates a WAL sender process over there. Both exchange information in an endless loop whereas the standby server keeps in
'recovery mode'.

The authorization at the operating system level shall be done by exchanging ssh keys.

Parameters in the STANDBY's recovery.conf
standby_mode=on # activates standby mode
How to reach the master:
primary_conninfo='user=<replication_dbuser_at_master> host=<IP_of_master_server> port=<port_of_master_server>
 sslmode=prefer sslcompression=1 krbsrvname=...'
This file can be created by the pg_basebackup utility, see below

On the master site there must be a privileged database user with the special role REPLICATION:

CREATE ROLE <replication_dbuser_at_master> REPLICATION ...;

And the master must accept connections from the standby in general and with a certain number of processes.

Allow connections from standby to master in MASTER's postgres.conf
listen_addresses ='<ip_of_standby_server>' # what IP address(es) to listen on
max_wal_senders = 5 # no more replication processes/connections than this number

Additionally, authentication of the replication database user must be possible. Please notice that the key word ALL for the database name
does not include the authentication of the replication activities. 'Replication' is a key word of its own and must be noted explicitly.

One additional line in MASTER's pg_hba.conf
Allow the <replication_dbuser> to connect from standby to master
host replication <replication_dbuser> <IP_of_standby_server>/32 trust

Now you are ready to start. First, you must start the master. Second, you must transfer the complete databases from the master to the standby.
And at last you can start the standby. Just as the replication, the transfer of the databases is initiated at the standby site.

Configuration

Shipping: WAL-File-Shipping vs. Streaming

pg_basebackup -h <IP_of_master_server> -D main --wal-methode=stream --checkpoint=fast -R

The utility pg_basebackup transfers everythink to the directory 'main' (shall be empty), in this case it uses the streaming methode, it initiates a
checkpoint at the master site to enforce consistency of database files and WAL files, and due to the -R flag it generates previous mentioned
recovery.conf file.

The decoding of WAL records from their physical format to a logical format was introduced in PostgreSQL 9.4. The physical format contains
- among others - block numbers, VACUUM information and it depends on the used character encoding of the databases. In contrast, the
logical format is independent from all these details - conceptually even from the PostgreSQL version. Decoded records are offered to
registered streams for consuming.

This logical format offers some great advantages: transfer to dabases at different major release levels, at different hardware architectures, and
even to other writing master. Thus multi-master-architectures are possible. And additionally it's not necessary to replicate the complete cluster:
you can pick single database objects.

In release 9.5 the feature is not delivered with core PostgreSQL. You must install some extensions:

CREATE EXTENTION btreee_gist;
CREATE EXTENSION bdr;

As the feature is relative new, we don't offer details and refer to the documentation (http://www.postgresql.org/docs/current/static/logicaldeco
ding.html). And there is an important project Bi-Directional Replication (http://bdr-project.org/docs/stable/index.html), which is based on this
technique.

The default behaviour is asynchronous replication. This means that transferred data is processed at the standby server without any
synchronization with the master, even in the case of a COMMIT. In opposite to this behaviour the master of a synchronous replication waits
for a successful processing of COMMIT statements at the standby before he confirms it to its client.

The synchronous replication is activated by the parameter 'synchronous_standby_names'. Its values identify such standby servers, for which
the synchronicity shall take place. A '*' indicates all standby server.

master's postgres.conf file
synchronous_standby_names = '*'

As long as the standby server is running, he will continuously handle incoming change information and store it in its databases. If there is no
necessity to process requests from applications, he shall run in warm standby mode. This behaviour is enforced in the recovery.conf file.

recovery.conf on standby server
hot_standby = off

If he shall allow client connections, he must start in hot standby mode. In this mode read-only access from clients are possible - write actions
are denied.

recovery.conf on standby server
hot_standby = on

To generate enough information on the master site for the standby's hot standby mode, its WAL level must also be replica or higher.

postgres.conf on master server
wal_level = replica

We offer some typical combinations of the above-mentioned concepts and show its advantages and disadvantages.

Format: Physical vs. Logical

Synchronism: synchron vs. asynchron

Standby Mode: hot vs. warm

Typical Use Cases

Warm Standby with Log-Shipping

http://www.postgresql.org/docs/current/static/logicaldecoding.html
http://bdr-project.org/docs/stable/index.html

In this situation a master sends information about changed data to a standby using completely filled WAL files (16 MB). The standby
continuously processes the incoming information, which means that the changes made on the master are seen at the standby over time.

To build this scenario, you must perform steps, which are very similar to Backup with PITR:

Take a physical backup exactly as described in Backup with PITR and transfer it to the standby.
At the master site postgres.conf must specify wal_level=replica; archive_mode=on and a copy command
to transfer WAL files to the standby site.
At the standby site the central step is the creation of a recovery.conf file with the line standby_mode='on'. This is
a sign to the standby to perform an 'endless recovery process' after its start.
recovery.conf must contain some more definitions: restore_command, archive_cleanup_command

With this parametrisation the master will copy its completely filled WAL files to the standby. The standby processes the received WAL files
by copying the change information into its database files. This behaviour is nearly the same as a recovery after a crash. The difference is, that
the recovery mode is not finish after processing the last WAL file, the standby waits for the arrival of the next WAL file.

You can copy the arising WAL files to a lot of servers and activate warm standby on each of them. Doing so, you get a lot of standbys.

This variant offers a very valuable feature in comparison with the warm standby scenario: applications can connect to the standby and send
read requests to him while he runs in standby mode.

To achieve this situation, you must increase wal_level to hot_standby at the master site. This leads to some additional information in
the WAL files. And on the standby site you must add hot_standby=on in postgres.conf. After its start the standby will not only
process the WAL files but also accept and response to read-requests from clients.

The main use case for hot standby is load-balancing. If there is a huge number of read-requests, you can reduce the masters load by
delegating them to one or more standby servers. This solution scales very good across a great number of parallel working standby servers.

Both scenarios cold/hot with log-shipping have a common shortage: The amount of transferred data is always 16 MB. Depending on the
frequency of changes at the master site it can take a long time until the transfer is started. The next chapter shows a technique which does not
have this deficiency.

The use of files to transfer information from one server to another - as it is shown in the above log-shipping scenarios - has a lot of shortages
and is therefore a little outdated. Direct communication between programs running on different nodes is more complex but offers significant
advantages: the speed of communication is incredible higher and in much cases the size of transferred data is smaller. In order to gain these
benefits, PostgreSQL has implemented the streaming replication technique, which connects master and standby servers via TCP. This
technique adds two additional processes: the WAL sender process at the master site and the WAL receiver process at the standby site. They
exchange information about data changes in the master's database.

The communication is initiated by the standby site and must run with a database user with REPLICATION privileges. This user must be
created at the master site and authorized in the master's pg_hba.conf file. The master must accept connections from the standby in general and
with a certain number of processes. The authorization at the operating system level shall be done by exchanging ssh keys.

Master site:
============

-- SQL
CREATE ROLE <replication_dbuser_at_master> REPLICATION ...;

postgresql.conf: allow connections from standby to master
listen_addresses ='<ip_of_standby_server>' # what IP address(es) to listen on
max_wal_senders = 5 # no more replication processes/connections than this number
make hot standby possible
wal_level = replica # 'hot_standby' in versions prior to PG 9.6

pg_hba.conf: one additional line (the 'all' entry doesn't apply to replication)
Allow the <replication_dbuser> to connect from standby to master
host replication <replication_dbuser> <IP_of_standby_server>/32 trust

Standby site:
=============

recovery.conf (this file can be created by the pg_basebackup utility, see below)
standby_mode=on # activates standby mode
How to reach the master:
primary_conninfo='user=<replication_dbuser_at_master_server> host=<IP_of_master_server> port=<port_of_master_server>
 sslmode=prefer sslcompression=1 krbsrvname=...'

postgres.conf: activate hot standby
hot_standby = on

Hot Standby with Log-Shipping

Hot Standby with Streaming Replication

https://en.wikibooks.org/wiki/PostgreSQL/BackupAndRecovery#Physical_Backup_plus_PITR
https://en.wikibooks.org/wiki/PostgreSQL/BackupAndRecovery#Physical_Backup_plus_PITR

Now you are ready to start. First, you must start the master. Second, you must transfer the complete databases from the master to the standby.
And at last you start the standby. Just as the replication activities, the transfer of the databases is initiated at the standby site.

pg_basebackup -h <IP_of_master_server> -D main --wal-method=stream --checkpoint=fast -R

The utility pg_basebackup transfers everythink to the directory 'main' (shall be empty), in this case it uses the streaming methode, it initiates a
checkpoint at the master site to enforce consistency of database files and WAL files, and due to the -R flag it generates the previous
mentioned recovery.conf file.

The activation of the 'hot' standby is done exactly as in the previous use case.

If you have to manage a complex replication use case, you may want to check the open source project 'repmgr' (https://repmgr.org/). It
supports you to monitor the cluster of nodes or perform a failover.

An Additional Tool

https://repmgr.org/

Partitioning

If you have a table with a very huge amount of data, it may be helpful to scatter the data to different physical tables which share a common
data structure. In such use cases, where DML statements concern only one of those physical tables, you can get great performance benefits
from partitioning. Typically this is the case, if there is any timeline or a geographical distribution of the values of a column.

Postgres 10 introduced a declarative partition-defining-syntax in addition to the previous table-inheritance-syntax. With this syntax the
necessity to define an additional trigger disappears, but in comparision to the previous solution the functionality stays unchanged.

First, you define a master table containing a partitioning methode which is PARTITION BY RANGE (column_name) in this
example:

Next, you create partitions with the same structure as the master and ensure, that only rows within the expected data range can be stored
there. Those partitions are conventional, physical tables.

First, you define a master table, which is a conventional table.

Next, you create partitions with the same structure as the master table by using the table-inheritance mechanism INHERITS
(table_name). Additionally you must ensure that only rows within the expected data range can be stored in the derived tables.

You need a function, which transfers rows into the appropriate partition.

The function is called by a trigger.

Declarative-partitioning-syntax: since version 10

CREATE TABLE log (
 id int not null,
 logdate date not null,
 message varchar(500)
) PARTITION BY RANGE (logdate);

CREATE TABLE log_2015_01 PARTITION OF log FOR VALUES FROM ('2015-01-01') TO ('2015-02-01');
CREATE TABLE log_2015_02 PARTITION OF log FOR VALUES FROM ('2015-02-01') TO ('2015-03-01');
...
CREATE TABLE log_2015_12 PARTITION OF log FOR VALUES FROM ('2015-12-01') TO ('2016-01-01');
CREATE TABLE log_2016_01 PARTITION OF log FOR VALUES FROM ('2016-01-01') TO ('2016-02-01');
...

Table-inheritance-syntax

CREATE TABLE log (
 id int not null,
 logdate date not null,
 message varchar(500)
);

CREATE TABLE log_2015_01 (CHECK (logdate >= DATE '2015-01-01' AND logdate < DATE '2015-02-01')) INHERITS (log);
CREATE TABLE log_2015_02 (CHECK (logdate >= DATE '2015-02-01' AND logdate < DATE '2015-03-01')) INHERITS (log);
...
CREATE TABLE log_2015_12 (CHECK (logdate >= DATE '2015-12-01' AND logdate < DATE '2016-01-01')) INHERITS (log);
CREATE TABLE log_2016_01 (CHECK (logdate >= DATE '2016-01-01' AND logdate < DATE '2016-02-01')) INHERITS (log);
...

CREATE OR REPLACE FUNCTION log_ins_function() RETURNS TRIGGER AS $$
BEGIN
 IF (NEW.logdate >= DATE '2015-01-01' AND NEW.logdate < DATE '2015-02-01') THEN
 INSERT INTO log_2015_01 VALUES (NEW.*);
 ELSIF (NEW.logdate >= DATE '2015-02-01' AND NEW.logdate < DATE '2015-03-01') THEN
 INSERT INTO log_2015_02 VALUES (NEW.*);
 ELSIF ...
 ...
 END IF;
 RETURN NULL;
END;
$$
LANGUAGE plpgsql;

CREATE TRIGGER log_ins_trigger
 BEFORE INSERT ON log
 FOR EACH ROW EXECUTE PROCEDURE log_ins_function();

It's a good idea to create an index.

Many DML statements like SELECT * FROM log WHERE logdate = '2015-01-15'; act only on one partition and can
ignore all the others. This is very helpfull especially in such cases where a full table scan becomes necessary. The query optimizer has the
chance to generate execution plans which avoid scanning unnecessary partitions.

In the shown example new rows will mainly go to the newest partition. After some years you can drop old partitions as a whole. This shall be
done with the command DROP TABLE - not with a DELETE command. The DROP TABLE command is much faster than the DELETE
command as it removes the complete partition in one single step instead of touching every single row.

Further Steps

CREATE INDEX log_2015_01_idx ON log_2015_01 (logdate);
CREATE INDEX log_2015_02_idx ON log_2015_02 (logdate);
...

Tablespace
The default behaviour of PostgreSQL is, that all data, indices, and management information is stored in subdirectories of a single directory.
But this approach is not always suitable. In some situation you may want to change the storage area of one or more tables: data grows and
may blow up partition limits, you may want to use fast devices like a ssd for heavily used tables, etc. . Therefore you need a technique to
become more flexible.

Tablespaces offers the possibility to push data on arbitrary directories within your file system.

CREATE TABLESPACE fast LOCATION '/ssd1/postgresql/fastTablespace';

After the tablespace is defined it can be used in DDL statements.

CREATE TABLE t1(col_1 int) TABLESPACE fast;

Upgrade

When upgrading the PostgreSQL software, you must take care of the data in the cluster - depending on the question whether it is an upgrade
of a major or a minor version. The PostgreSQL version number consists of two or three groups of digits, divided by colons. The first two
groups denotes the major version and the third group (if present) denotes the minor version.

Upgrades within minor versions are simple. The internal data format does not change, so you only need to install the new software while the
instance is down.

Upgrades of major versions may lead to incompatiblities of internal data structures. Therefore special actions may become necessary. There
are several strategies to overcome the situation. In many cases upgrades of major versions additionally introduce some user-visible
incompatibilities, so application programming changes might be required. You should read the release notes carefully.

pg_upgrade is a utility which modifies data files and system catalogs according to the needs of the new version. It has two major
behaviors: In --link mode files are modified in place, otherwise the files are copied to a new location.

pg_dumpall is a standard utility to generate logical backups of the cluster. Files generated by pg_dumpall are plain text files and thus
independent from all internal structures. When modifications of the data's internal structure become necessary (upgrade, different hardware
architecture, different operating system, ...), such logical backups can be used for the data transfer from the old to the new system.

The Slony replication system offers the possiblity to transfer data over different major versions. Using this, you can switch a replication slave
to the new master within a very short time frame.

PostgreSQL offers replication in logical streaming format. With the actual version 9.5 this feature is restricted to the same versions of master
and standby server, but it is planned to extend it for use in a heterogenuous server landscape.

pg_upgrade

pg_dumpall

Replication

Terms
To promote a consistent use and understanding of important terms we list and define them here. For some terms we include short annotations
to give a first introduction to the subject.

A server is some (real or virtual) hardware where PostgreSQL is installed. In this document, the word instance is a different concept from
server. See the definition of instance later in this document.

A set of nodes, which interchange information via replication.

After you have downloaded and installed PostgreSQL, you have a set of programs, scripts, configuration- and other files on a server. This set
is called the 'Installation'. It includes all instance programs as well as some client programs like psql.

The term server database is often used in the context of client/server connections to refer to an instance or a single database.

A cluster is a storage area (directory, subdirectories and files) in the file system, where a collection of databases plus meta-information resides.
Within the database cluster there are also the definitions of global objects like users and their rights. They are known across the entire
database cluster. (Access rights for an user may be limited to individual objects like a certain table or a certain schema. In that case, the user
will not have this access rights to the other objects of the cluster.)

Within a database cluster there are at least three databases: 'template0', 'template1', 'postgres' and possibly more.

Database Cluster

Overview

Server (or Node)

Cluster of Nodes

Installation

Server Database

Cluster (or 'Database Cluster')

https://en.wikibooks.org/wiki/File:PostgreSQL_cluster_1.svg

'template0': A template database, which may be used by the command CREATE DATABASE (template0 should never be
modified)
'template1': A template database, which may be used by the command CREATE DATABASE (template1 may be modified
by DBA)
'postgres': An empty database, mainly for maintenance purposes

Most PostgreSQL installations use only one database cluster. Its name is 'main'. But you can create more clusters on the same PostgreSQL
installation, see tools initdb further down.

An instance is a group of processes (on a UNIX server) or one service (on a Windows server) plus shared memory, which controls and
manages exactly one cluster. Using IP terminology one can say that one instance occupies one IP/port combination, eg. the combination
http://localhost:5432. It is possible that on a different port of the same server another instance is running. The processes (in a UNIX server),
which build an instance, are called: postmaster (creates one 'postgres'-process per client-connection), logger, checkpointer, background writer,
WAL writer, autovacuum launcher, archiver, stats collector. The role of each process is explained in the chapter architecture.
If you have many clusters on your server, you can run many instances at the same machine - one per cluster.
Hint: Other publications sometimes use the term server to refer to an instance. As the term server is widely used to refer to real or virtual
hardware, we do not use server as a synonym for instance.

A database is a storage area in the file system, where a collection of objects is stored in files. The objects consist of data, metadata (table
definitions, data types, constraints, views, ...) and other data like indices. Those objects are stored in the default database 'postgres' or in a
newly created database.
The storage area for one database is organized as one subdirectory tree within the storage area of the database cluster. Thus a database cluster
may contain multiple databases.
In a newly created database cluster (see below: initdb) there is an empty database with the name 'postgres'. In most cases this database stays
empty and application data is stored in separate databases like 'finance' or 'engineering'. Nevertheless 'postgres' should not be dropped
because some tools try to store temporary data within this database.

A schema is a namespace within a database: it contains named objects (tables, data types, functions, and operators) whose names can
duplicate those of other objects existing in other schemas of this database. Every database contains the default schema 'public' and may
contain more schemas. All objects of one schema must reside within the same database. Objects of different schemas within the same
database may have the same name.
There is another special schema in each database. The schema 'pg_catalog' contains all system tables, built-in data types, functions, and
operators. See also 'Search Path' below.

A Search Path is a list of schema names. If applications use unqualified object names (e.g.: 'employee_table' for a table name), the search path
is used to locate this object in the given sequence of schemas. The schema 'pg_catalog' is always the first part of the search path although it is
not explicitly listed in the search path. This behaviour ensures that PostgreSQL finds the system objects.

Despite of its name the utility initdb creates a new cluster, which contains the 3 databases 'template0', 'template1' and 'postgres'.

The utility createdb creates a new database within the actual cluster.

The SQL command CREATE DATABASE creates a new database within the actual cluster.

Instance (or 'Database Server Instance' or 'Database Server' or 'Backend')

Database

Schema

Search Path (or 'Schema Search Path')

initdb (OS command)

createdb (OS command)

CREATE DATABASE (SQL command)

Directory Structure

http://localhost:5432/
https://en.wikibooks.org/wiki/PostgreSQL/Architecture

A cluster and its databases consists of files, which hold data, actual status information, modification information and a lot more. Those files
are organized in a fixed way under one directory node.

Shared bufferes are RAM pages, which mirror pages of data files on disc. They exist due to performance reasons. The term shared results
from the fact that a lot of processes read and write to that area.

Pages in the shared buffers mirror pages of data files on disc. When clients request changes of data, those pages get changed without -
provisionally - a change of the related pages on disc. Until the background writer writes those modified pages to disc, they are called 'dirty'
pages.

A checkpoint is a special point in time where it is guarantied that the database files are in a consistent state. At checkpoint time all change
records are flushed to the WAL file, all dirty data pages (in shared buffers) are flushed to disc, and at last a special checkpoint record is
written to the WAL file.
The instance's checkpointer process automatically triggers checkpoints on a regular basis. Additionally they can be forced by issuing the
command CHECKPOINT in a client program. For the database system it takes a lot of time to perform a checkpoint - because of the physical
writes to disc.

WAL files contain the changes which are applied to the data by modifying commands like INSERT, UPDATE, DELETE or CREATE
TABLE This is redundant information as it is also recorded in the data files (for better performance at a later time). According to the
configuration of the instance there may be more information within WAL files. WAL files reside in the pg_wal directory (which was named
pg_xlog before version 10), have a binary format and a fixed size of 16MB. When they are no longer needed, they get recycled by
renaming and reusing their already allocated space.
A single information unit within a WAL file is called a log record.
Hint: In the PostgreSQL documentation and in related documents there are a lot of other, similar terms which refer to what we denote as WAL
file in this Wikibook: segment, WAL segment, logfile (don't mix it with the term logfile, see below), WAL log file,

The instance logs and reports warning and error messages about special situations in readable text files. These logfiles can reside at any place
in the directory structure of the server and are not part of the cluster.
Hint: The term 'logfile' does not relate to the other terms of this subchapter. It is mentioned here because the term sometimes is used as a
synonym for what we call WAL file - see above.

Consistent Writes

Shared Buffers

'Dirty' Page

Checkpoint

WAL File

Logfile

https://en.wikibooks.org/wiki/File:PostgreSQL_cluster_2.svg

A log record is a single information unit within a WAL file.

The term segment is sometimes used as a synonym for WAL file.

Multiversion Concurrency Control (MVCC) is a common database technique to accomplish two goals: First, it allows the management of
parallel running transactions on a logical level and second, it ensures high performance for concurrent read and write actions. It is
implemented as follows: Whenever some values of an existing row change, PostgreSQL writes a new version of this row to the database
without deleting the old one. In such situations the database contains multiple versions of the row. In addition to their regular data the rows
contain transaction IDs which allows to decide, which other transactions will see the new or the old row. Hence other transactions sees only
those values (of other transactions), which are committed.
Outdated old rows are deleted at a later time by the utility vacuumdb respectively the SQL command vacuum.

The term cold as an addition to the backup method name indicates that with this method the instance must be stopped to create a useful
backup. In contrast, the addition 'hot' denotes methods where the instance MUST run (and hence changes to the data may occur during
backup actions).

A cold backup is a consistent copy of all files of the cluster with OS tools like cp or tar. During the creation of a cold backup the instance
must not run - otherwise the backup is useless. Hence you need a period of time in which applications do not use any database of the cluster
- a continuous 7×24 operation mode is not possible. And secondly: the cold backup works only on the cluster level, not on any finer
granularity like database or table.
Hint: A cold backup is sometimes called an "offline backup".

A logical backup is a consistent copy of the data within a database or some of its parts. It is created with the utility pg_dump. Although
pg_dump may run in parallel to applications (the instance must be up), it creates a consistent snapshot as of the time of its start.
pg_dump supports two output formats. The first one is a text format containing SQL commands like CREATE and INSERT. Files created
in this format may be used by psql to restore the backed-up data. The second format is a binary format and is called the 'archive format'.
Files with this format can be used to restore its data with the tool pg_restore.
As mentioned, pg_dump works at the database level or smaller parts of databases like tables. If you want to refer to the cluster level, you
must use pg_dumpall. Please notice, that important objects like users/roles and their rights are always defined at cluster level.
Hint: A logical backup is one form of an "online backup".

A physical backup is a possibly inconsistent copy of the files of a cluster, created with an operating system utility like cp or tar. At first
glance such a backup seems to be useless. To understand its purpose, you must know PostgreSQL's recover-from-crash strategy.

At all times and independent from any backup/recovery action, PostgreSQL maintains WAL files - primarily for crash-
safety purposes. WAL files contain log records, which reflect all changes made to the data. In the case of a system crash
those log records are used to recover the cluster to a consistent state. The recover process searches the timestamp of
the last checkpoint and replays all subsequent log records in chronological order against this version of the cluster.
Through this action the cluster returns to a consistent state and will contain all changes up to the last COMMIT.

The existence of a physical backup plus WAL files in combination with this recovery-from-crash technique can be used for backup/recovery
purposes. To implement this, you need a physical backup (which may reflect an inconsistent state of the cluster) and which acts as the starting
point. Additionally you need all WAL files since the point in time when you have created this backup. The recover process uses the described
recovery-from-crash technique and replays all log records in the WAL files against the backup. In the exact same way as before, the cluster

Log Record

Segment

MVCC

Backup and Recovery

(Cold) Backup (file system tools) (http://www.postgresql.org/docs/current/static/creating-cluster.h
tml)

(Hot) Logical Backup (pg_dump utility) (http://www.postgresql.org/docs/current/static/backup-du
mp.html)

(Hot) Physical Backup or 'Base Backup' (http://www.postgresql.org/docs/current/static/continuou
s-archiving.html)

https://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://www.postgresql.org/docs/current/static/creating-cluster.html
http://www.postgresql.org/docs/current/static/backup-dump.html
http://www.postgresql.org/docs/current/static/continuous-archiving.html

comes to a consistent state and contains all changes up to the last COMMIT.
Please keep in mind, that physical backups work only on cluster level, not on any finer granularity like database or table.
Hint: A physical backup is one form of an "online backup".

If the previously mentioned physical backup is used during recovery, the recovery process is not forced to run up to the latest available
timestamp. Via a parameter you can stop it at a time in the past. This leads to a state of the cluster at this moment. Using this technique you
can restore your cluster to a time, which is between the time of creating the physical backup and the end of the last WAL file.

The standalone backup is a special variant of the physical backup. It offers online backup (the instance keeps running) but it lacks the
possibility of PITR. The recovery process recovers always up to the end of the standalone backup process. WAL files, which arise after this
point in time, cannot be applied to this kind of backup. Details are described here (http://www.postgresql.org/docs/current/static/continuous-ar
chiving.html).

Archiving is the process of copying WAL files to a failsafe location. When you plan to use PITR you must ensure that the sequence of WAL
files is saved for a longer period. To support the process of copying WAL files at the right moment (when they are completely filled and a
switch to the next WAL file has taken place), PostgreSQL runs the archiving process which is part of the instance. This process copies WAL
files to a configurable destination.

Recovering is the process of playing WAL files against a physical backup. One of the involved steps is the copy of the WAL files from the
failsafe archive location to its original location in '/pg_xlog'. The aim of recovery is bringing the cluster into a consistent state at a defined
timestamp.

When recovering takes place, the instance is in archive recovery mode.

A restartpoint is an action similar to a checkpoint. Restartpoints are only performed when the instance is in archive recovery mode or in
standby mode.

After a successful recovery PostgreSQL transfers the cluster into a new timeline to avoid problems, which may occur when PITR is reset and
WAL files reapplied (e.g.: to a different timestamp). Timeline names are sequential numbers: 1, 2, 3,

Replication is a technique to send data, which was written within a master server, to one or more standby servers or even another master
server.

The master server is an instance on a server which sends data to other instances in addition to its local processing of data.

The standby server is an instance on a server which receives information from a master server about changes of its data.

PITR: Point in Time Recovery (http://www.postgresql.org/docs/current/static/continuous-archivin
g.html)

Standalone (Hot) Backup

Archiving

Recovering

Archive Recovery Mode

Restartpoint

Timeline

Replication

Master Server

Standby Server

Warm Standby Server

http://www.postgresql.org/docs/current/static/continuous-archiving.html
http://www.postgresql.org/docs/current/static/continuous-archiving.html

A warm standby server is a running instance, which is in standby_mode (recovery.conf file). It continuously reads and processes incoming
WAL files (in the case of log-shipping) or log records (in the case of streaming replication). It does not accept client connections.

A hot standby server is a warm standby server with the additional flag hot_standby in postgres.conf. It accepts client connections and read-
only queries.

Replication is called synchronous, when the standby server processes the received data immediately, sends a confirmation record to the
master server and the master server delays its COMMIT action until he has received the confirmation of the standby server.

Replication is called asynchronous, when the master server sends data to the standby server and does not expect any feedback about this
action.

The term is used when log entries are transfered from master server to standby server over a TCP connection - in addition to their transfer to
the local WAL file. Streaming replication is asynchronous by default but can also be synchronous.

Log shipping is the process of transfering WAL files from a master server to a standby server. Log shipping is an asynchronous operation.

Hot Standby Server

Synchronous Replication

Asynchronous Replication

Streaming Replication

Log-Shipping Replication

Extensions
PostgreSQL offers an extensibility architecture and implements its internal datatypes, operators, functions, indexes, and more on top of it.
This architecture is open for everybody to implement and add his own functionality to the PostgreSQL system. You can define new datatypes
with or without special operators and functions as needed by your use case. After you have added them, you have the best of two worlds: the
special functionalities you have created plus the standard functionality of a database system like ACID, SQL, security, standard data types,
WAL, client APIs, An introduction to extensibility is given in the PostgreSQL documentation (https://www.postgresql.org/docs/current/e
xtend.html).

Over time the community has developed a set of extensions which are useful for their own needs and for a great number of applications -
sometimes even for the requirements and definitions given by standardization organisations. Some popular examples are

Data types, operators, and function for the handling of spatial data like points, polylines, overlaps(), ... as defined by
OSGeo and SQL Multimedia and Application Packages Part 3: Spatial.
Functionality for full text search as defined by SQL Multimedia and Application Packages Part 2: Full-Text.
Access to data outside the current database (other PostgreSQL instance, other SQL, NoSQL or BigData database
system, LDAP, flat files like csv, json, xml) as defined by SQL Part 9: Management of External Data.

The lifecycle of such an extension starts with the implementation of its features by a group of persons or a company. After publishing, the
extension may be used and further expanded by other persons or companies of the community. Sometimes such extensions keep independent
from the PostgreSQL system, e.g.: PostGIS, in other cases they are delivered with the standard download and explicitly listed as an
Additional Supplied Module (https://www.postgresql.org/docs/current/contrib.html) within the documentation with hints how to install them.
And in rare cases extensions are incorporated into the core system so that they become a native part of PostgreSQL.

To activate and use an extension, you must download and install the necessary files (if not delivered with the standard download) and issue
the command CREATE EXTENSION <extension_name>; within an SQL client like psql. To control which extensions are
already installed use: \dx within psql.

PostGIS is a project which extends PostgreSQL with a rich set of 2D and 3D spacial data types plus associated functions, operators and
index types as defined by OSGeo and SQL Multimedia and Application Packages Part 3: Spatial. Typically data types are polygon or
multipoint, typical functions are st_length() or st_contains(). The appropriated index type for spatial objects is the GiST index.

The PostGIS project has its own representation on the WEB (http://postgis.net/) where all its aspects are described, especially the download
process and the activation of the extension itself.

Foreign Data Wrappers (FDW) are PostgreSQL extensions which offers access to data outside of the actual database and instance. There are
different types of data wrappers:

One wrapper to other PostgreSQL instances: postgres_fdw
A lot of wrappers to other relational database systems like Oracle, MySQL, MS SQL Server, ...
A lot of wrappers to NoSQL database systems: CouchDB, MongoDB, Cassandra, ...
Generic wrappers to ODBC and JDBC
A lot of wrapper to files of different formats: csv, xml, json, tar, zip, ... (file_fdw)
LDAP wrapper
... and more.

A comprehensive list (https://wiki.postgresql.org/wiki/Foreign_data_wrappers) gives an overview.

The technique of FDW is defined in the SQL standard Part 9: Management of External Data.

Here is an example how to access another PostgreSQL instance via FDW.

-- Install the extension to other PostgreSQL instances
CREATE EXTENSION postgres_fdw;

-- Define the connection to a database/instance at a different server
CREATE SERVER remote_geo_server
 FOREIGN DATA WRAPPER postgres_fdw
 OPTIONS (host '10.10.10.10', port '5432', dbname 'geo_data');

-- Define a user for the connection (The remote user must have access rights at the remote database)
CREATE USER MAPPING FOR CURRENT_USER
 SERVER remote_geo_server
 OPTIONS (user 'geo_data_user', password 'xxx');

-- Define two foreign tables via an IMPORT command ...

PostGIS

Foreign Data Wrappers

https://www.postgresql.org/docs/current/extend.html
https://en.wikipedia.org/wiki/Open_Source_Geospatial_Foundation
https://en.wikipedia.org/wiki/SQL#Interoperability_and_standardization
https://en.wikipedia.org/wiki/SQL#Interoperability_and_standardization
https://en.wikipedia.org/wiki/SQL/MED
https://www.postgresql.org/docs/current/contrib.html
https://en.wikipedia.org/wiki/PostGIS
https://en.wikipedia.org/wiki/Open_Source_Geospatial_Foundation
https://en.wikipedia.org/wiki/SQL#Interoperability_and_standardization
https://en.wikibooks.org/wiki/PostgreSQL/Index_Types#GiST_-_mainly_for_ranges
http://postgis.net/
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://en.wikipedia.org/wiki/SQL/MED

IMPORT FOREIGN SCHEMA geo_schema
 LIMIT TO (city, point_of_interest)
 FROM SERVER remote_geo_server
 INTO my_schema;

-- .. and another foreign table via an explicit definition
CREATE FOREIGN TABLE remote_person (
 id SERIAL,
 person_name TEXT NOT NULL,
 city_id INT4 NOT NULL
)
SERVER remote_geo_server
OPTIONS(schema_name 'geo_schema', table_name 'person');

After the execution of the above statements you have access to the three tables city, point_of_interest and remote_person with the usual DML
commands SELECT, UPDATE, COMMIT, Nevertheless the data keeps at the 'remote' server (10.10.10.10), queries are executed there,
and only the results of queries are transfered via network to the actual instance and your client application.

SELECT count(*) FROM city; -- table 'city' resides on a different server

BDR is an extension which allows replication in both directions between involved (master-) nodes in parallel to their regular read and write
activities of their client applications. So it realizes a multi-master replication. Actually the project is a standalone project (http://bdr-project.org/
docs/next/index.html). But multiple technologies emerging from BDR development have already become an integral part of core
PostgreSQL, such as Event Triggers (https://www.postgresql.org/docs/current/event-triggers.html), Logical Decoding (https://www.postgresq
l.org/docs/current/logicaldecoding.html), Replication Slots (https://www.postgresql.org/docs/current/logicaldecoding-explanation.html#LOGI
CALDECODING-REPLICATION-SLOTS), Background Workers (https://www.postgresql.org/docs/current/bgworker.html), and more.

Retrieved from "https://en.wikibooks.org/w/index.php?title=PostgreSQL/Print_version&oldid=3836743"

This page was last edited on 18 May 2021, at 03:13.

Text is available under the Creative Commons Attribution-ShareAlike License.; additional terms may apply. By using this site, you agree to the Terms of
Use and Privacy Policy.

Bidirectional Replication (BDR)

http://bdr-project.org/docs/next/index.html
https://www.postgresql.org/docs/current/event-triggers.html
https://www.postgresql.org/docs/current/logicaldecoding.html
https://www.postgresql.org/docs/current/logicaldecoding-explanation.html#LOGICALDECODING-REPLICATION-SLOTS
https://www.postgresql.org/docs/current/bgworker.html
https://en.wikibooks.org/w/index.php?title=PostgreSQL/Print_version&oldid=3836743
https://creativecommons.org/licenses/by-sa/3.0/
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy

